An experimental investigation of the role of liquid transparency in controlling laser-induced motion of liquid drops is carried out. The study was motivated by application to manipulation of liquid drops over a solid substrate. Droplets with diameters of 1–4 mm were propelled on a hydrophobic substrate using a pulsed-laser beam (532 nm, 10 Hz, 3–12 mJ/pulse) with a 0.9 mm diameter fired parallel to the substrate. The test liquid was distilled water whose transparency was varied by adding different concentrations of Rhodamine 6G dye. Motion of the drops was observed using a video camera. Measurements include direction of motion and the distance traveled before the drops come to rest. The present results show that the direction of the motion depends on the drop transparency; opaque drops moved away from the laser beam, whereas transparent drops moved at small angles toward the laser beam. The motion of both transparent and opaque drops was dominated by thermal Marangoni effect; the motion of opaque drops was due to direct heating by the laser beam, whereas in the case of transparent drops, the laser beam was focused near the rear face of the transparent drops to form a spark that pushed the drops in the opposite direction. Energies lower than 3 mJ were incapable of moving the drops, and energies higher than 12 mJ shattered the drops instead of moving them. A phenomenological model was developed for the drop motion to explain the physics behind the phenomenon.

1.
Kotz
,
K. T.
,
Gu
,
Y.
, and
Faris
,
G. W.
, 2005, “
Optically Addressed Droplet-Based Protein Assay
,”
J. Am. Chem. Soc.
0002-7863,
127
, pp.
5736
5737
.
2.
Song
,
H.
,
Chen
,
D. L.
, and
Ismagilov
,
R. F.
, 2006, “
Reactions in Droplets in Microfluidic Channels
,”
Angew. Chem., Int. Ed.
1433-7851,
45
(
44
), pp.
7336
7356
.
3.
Ozen
,
O.
,
Aubry
,
N.
,
Papageorgiou
,
D. T.
, and
Petropoulos
,
P. G.
, 2006, “
Monodisperse Drop Formation in Square Microchannels
,”
Phys. Rev. Lett.
0031-9007,
96
, p.
144501
.
4.
Cheow
,
L. F.
,
Yobas
,
L.
, and
Kwong
,
D. -L.
, 2007, “
Digital Microfluidics: Droplet Based Logic Gates
,”
Appl. Phys. Lett.
0003-6951,
90
, p.
054107
.
5.
Kitahata
,
H.
, 2006, “
Spontaneous Motion of a Droplet Coupled With Chemical Reaction
,”
Prog. Theor. Phys.
0033-068X,
161
, pp.
220
223
.
6.
Cho
,
S. K.
,
Moon
,
H.
, and
Kim
,
C. -J.
, 2003, “
Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits
,”
J. Microelectromech. Syst.
1057-7157,
12
(
1
), pp.
70
80
.
7.
Savino
,
R.
,
Monti
,
R.
, and
Alterio
,
G.
, 2001, “
Drops Pushing by Marangoni Forces
,”
Phys. Fluids
1070-6631,
13
(
5
), pp.
1513
1516
.
8.
Farahi
,
R. H.
,
Passian
,
A.
,
Ferrell
,
T. L.
, and
Thundat
,
T.
, 2004, “
Microfluidic Manipulation via Marangoni Forces
,”
Appl. Phys. Lett.
0003-6951,
85
(
18
), pp.
4237
4239
.
9.
Farahi
,
R. H.
,
Passian
,
A.
,
Zahrai
,
S.
,
Lereu
,
A. L.
,
Ferrell
,
T. L.
, and
Thundat
,
T.
, 2006, “
Microscale Marangoni Actuation: All-Optical and All-Electrical Methods
,”
Ultramicroscopy
0304-3991,
106
, pp.
815
821
.
10.
Passian
,
A.
,
Zahrai
,
S.
,
Lereu
,
A. L.
,
Farahi
,
R. H.
,
Ferrell
,
T. L.
, and
Thundat
,
T.
, 2006, “
Nonradiative Surface Plasmon Assisted Microscale Marangoni Forces
,”
Phys. Rev. E
1063-651X,
73
, p.
066311
.
11.
Lereu
,
A. L.
,
Passian
,
A.
,
Farahi
,
R. H.
,
Zahrai
,
S.
, and
Thundat
,
T.
, 2006, “
Plasmonic Marangoni Forces
,”
J. Eur. Opt. Soc. Rapid Publ.
1990-2573,
1
, p.
06030
.
12.
Oh
,
S. -K.
,
Nakagawa
,
M.
, and
Ichimura
,
K.
, 2000, “
Light-Guided Movement of a Liquid Droplet
,”
Mol. Cryst. Liq. Crys. Sci. Technol.
,
345
, pp.
311
316
. 0002-7820
13.
Yang
,
J. -T.
,
Chen
,
J. C.
,
Huang
,
K. -J.
, and
Yeh
,
J. A.
, 2006, “
Droplet Manipulation on a Hydrophobic Textured Surface With Roughened Patterns
,”
J. Microelectromech. Syst.
1057-7157,
15
(
3
), pp.
697
707
.
14.
Moumen
,
N.
,
Subramanian
,
R. S.
, and
McLaughlin
,
J. B.
, 2006, “
Experiments on the Motion of Drops on a Horizontal Solid Surface Due to a Wettability Gradient
,”
Langmuir
0743-7463,
22
, pp.
2682
2690
.
15.
Chen
,
T. -H.
,
Chuang
,
Y. -J.
,
Chieng
,
C. -C.
, and
Tseng
,
F. -G.
, 2007, “
A Wettability Switchable Surface by Microscale Surface Morphology Change
,”
J. Micromech. Microeng.
0960-1317,
17
, pp.
489
495
.
16.
Fowler
,
J.
,
Moon
,
H.
, and
Kim
,
C. -J.
, 2002, “
Enhancement of Mixing by Droplet-Based Microfluidics
,”
15th IEEE International Conference on Micro Electro Mechanical Systems
, Las Vegas, NV, pp.
97
100
.
17.
Ford
,
M. L.
, and
Nadim
,
A.
, 1994, “
Thermocapillary Migration of an Attached Drop on a Solid Surface
,”
Phys. Fluids
1070-6631,
6
(
9
), pp.
3183
3185
.
18.
Farahi
,
R. H.
,
Passian
,
A.
,
Ferrell
,
T. L.
, and
Thundat
,
T.
, 2005, “
Marangoni Forces Created by Surface Plasmon Decay
,”
Opt. Lett.
0146-9592,
30
(
6
), pp.
616
618
.
19.
Grigoriev
,
R. O.
,
Schatz
,
M. F.
, and
Sharma
,
V.
, 2006, “
Chaotic Mixing in Microdroplets
,”
Lab Chip
1473-0197,
6
(
10
), pp.
1369
1372
.
20.
Zardecki
,
A.
, and
Pendleton
,
J. D.
, 1989, “
Hydrodynamics of Water Droplets Irradiated by a Pulsed CO2 Laser
,”
Appl. Opt.
0003-6935,
28
(
3
), pp.
638
640
.
21.
Garnier
,
N.
,
Grigoriev
,
R. O.
, and
Schatz
,
M. F.
, 2003, “
Optical Manipulation of Microscale Fluid Flow
,”
Phys. Rev. Lett.
0031-9007,
91
(
5
), p.
054501
.
22.
Kotz
,
K. T.
,
Noble
,
K. A.
, and
Faris
,
G. W.
, 2004, “
Optical Microfluidics
,”
Appl. Phys. Lett.
0003-6951,
85
(
13
), pp.
2658
2660
.
23.
Rybalko
,
S.
,
Magome
,
N.
, and
Yoshikawa
,
K.
, 2004, “
Forward and Backward Laser-Guided Motion of an Oil Droplet
,”
Phys. Rev. E
1063-651X,
70
(
4
), p.
046301
.
24.
Dietzel
,
M.
, and
Poulikakos
,
D.
, 2005, “
Laser-Induced Motion in Nanoparticle Suspension Droplets on a Surface
,”
Phys. Fluids
1070-6631,
17
(
10
), p.
102106
.
25.
Alzuaga
,
S.
,
Manceau
,
J. F.
, and
Bastien
,
F.
, 2005, “
Motion of Droplets on Solid Surface Using Acoustic Radiation Pressure
,”
J. Sound Vib.
0022-460X,
282
(
1–2
), pp.
151
162
.
26.
Ashkin
,
A.
, 1987, “
Optics: Laser Manipulation of Atoms
,”
Nature (London)
0028-0836,
330
, pp.
608
609
.
27.
Dholakia
,
K.
,
Spalding
,
G.
, and
MacDonald
,
M.
, 2002, “
Optical Tweezers: The Next Generation
,”
Phys. World
0953-8585,
15
(
10
), pp.
31
35
.
28.
Leach
,
J.
,
Mushfique
,
H.
,
di Leonardo
,
R.
,
Padgett
,
M.
, and
Cooper
,
J.
, 2006, “
An Optically Driven Pump for Microfluidics
,”
Lab Chip
1473-0197,
6
(
6
), pp.
735
739
.
29.
Schroll
,
R. D.
,
Wunenburger
,
R.
,
Casner
,
A.
,
Zhang
,
W. W.
, and
Delville
,
J. -P.
, 2007, “
Liquid Transport Due to Light Scattering
,”
Phys. Rev. Lett.
0031-9007,
98
(
13
), p.
133601
.
30.
Bisyarin
,
V. P.
,
Efremenko
,
V. V.
,
Kolosov
,
M. A.
,
Pozhidaev
,
V. N.
,
Sokolov
,
A. V.
,
Strelkov
,
G. M.
, and
Fedorova
,
L. V.
, 1983, “
Propagation of Laser Radiation in a Water Aerosol Under Aerosol Breakup Conditions
,”
Sov. Phys. J.
0038-5697,
26
(
2
), pp.
121
140
.
31.
Prishivalko
,
A. P.
, and
Leiko
,
S. T.
, 1984, “
Effect of Liquid Surface Layers on the Heat Release and Heating of Water Droplets Under the Action of Radiation
,”
Sov. Phys. J.
0038-5697,
5
(
2
), pp.
301
303
.
32.
Park
,
B. -S.
, and
Armstrong
,
R. L.
, 1989, “
Laser Droplet Heating: Fast and Slow Heating Regimes
,”
Appl. Opt.
0003-6935,
28
(
17
), pp.
3671
3680
.
33.
Singh
,
P. I.
, and
Knight
,
C. J.
, 1980, “
Impulse Laser-Induced Shattering of Water Drops
,”
AIAA J.
0001-1452,
18
(
1
), pp.
96
100
.
34.
Zuev
,
V. E.
, and
Zemlyanov
,
A. A.
, 1983, “
Explosion of a Drop Under the Action of Intense Laser Radiation
,”
Sov. Phys. J.
0038-5697,
26
(
2
), pp.
149
159
.
35.
Carls
,
J. C.
, and
Brock
,
J. R.
, 1987, “
Explosion of a Water Droplet by Pulsed Laser Heating
,”
Aerosol Sci. Technol.
0278-6826,
7
(
1
), pp.
79
90
.
36.
Ivanov
,
E. V.
,
Korovin
,
V. Y.
, and
Sedunov
,
Y. S.
, 1977, “
Motion of Optically Dense Liquid Drops in a Laser Radiation Field
,”
Sov. J. Quantum Electron.
0049-1748,
7
(
9
), pp.
1066
1071
.
37.
Autric
,
M.
,
Vigliano
,
P.
,
Dufresne
,
D.
,
Caressa
,
J. P.
, and
Bournot
,
P.
, 1988, “
Pulsed CO2 Laser-Induced Effects on Water Droplets
,”
AIAA J.
0001-1452,
26
(
1
), pp.
65
71
.
38.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
39.
Seeton
,
C. J.
, 2006, “
Viscosity–Temperature Correlation for Liquids
,”
Tribol. Lett.
1023-8883,
22
(
1
), pp.
67
78
.
40.
Astrakhan
,
I. M.
, 1959, “
Shock Wave Pressure With an Intense Spark Discharge in Water
,”
News of Higher Institutions of Learning, Petroleum and Gas
, No.
10
, Baku, pp.
87
92
.
41.
Zhuzhukalo
,
E. V.
,
Kolomifekii
,
A. N.
, and
Nastoyashchii
,
A. F.
, 1981, “
Breakdown of Atmospheric Air by Neodymium Laser Radiation Forming Large-Diameter Focusing Spots
,”
Sov. J. Quantum Electron.
0049-1748,
11
(
5
), pp.
670
671
.
42.
Phuoc
,
T. X.
, 2005, “
An Experimental and Numerical Study of Laser-Induced Spark in Air
,”
Opt. Lasers Eng.
0143-8166,
43
(
2
), pp.
113
129
.
43.
Phuoc
,
T. X.
, 2006, “
Laser-Induced Spark Ignition Fundamental and Applications
,”
Opt. Lasers Eng.
0143-8166,
44
(
5
), pp.
351
397
.
44.
Pegau
,
W. S.
,
Gray
,
D.
, and
Zaneveld
,
J. R. V.
, 1997, “
Absorption and Attenuation of Visible and Near-Infrared Light in Water: Dependence on Temperature and Salinity
,”
Appl. Opt.
0003-6935,
36
(
24
), pp.
6035
6046
.
45.
Bindhu
,
C. V.
,
Harilal
,
S. S.
,
Nampoori
,
V. P. N.
, and
Vallabhan
,
C. P. G.
, 1999, “
Studies of Nonlinear Absorption and Aggregation in Aqueous Solutions of Rhodamine 6G Using a Transient Thermal Lens Technique
,”
J. Phys. D
0022-3727,
32
(
4
), pp.
407
411
.
46.
White
,
F. M.
, 1991,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
47.
Ataide
,
C. H.
,
Pereira
,
F. A. R.
, and
Barrozo
,
M. A. S.
, 1999, “
Wall Effects on the Terminal Velocity of Spherical Particles in Newtonian and Non-Newtonian Fluids
,”
Braz. J. Chem. Eng.
0104-6632,
16
(
4
), pp.
387
394
.
48.
Chen
,
S. H.
, 1999, “
Thermocapillary Migration of a Fluid Sphere Parallel to an Insulated Plane
,”
Langmuir
0743-7463,
15
(
25
), pp.
8618
8626
.
49.
Chen
,
S. H.
, 2000, “
Movement of a Fluid Sphere in the Vicinity of a Flat Plane With Constant Temperature Gradient
,”
J. Colloid Interface Sci.
0021-9797,
230
(
1
), pp.
157
170
.
50.
Beduneau
,
J. L.
, and
Ikeda
,
Y.
, 2004, “
Spatial Characterization of Laser-Induced Sparks in Air
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
84
(
2
), pp.
123
139
.
51.
Zakharin
,
B.
,
Stricker
,
J.
, and
Toker
,
G.
, 1999, “
Laser-Induced Spark Schlieren Imaging
,”
AIAA J.
0001-1452,
37
(
9
), pp.
1133
1135
.
You do not currently have access to this content.