The effect of air flux from ventilated partial cavities on drag of bodies was studied. An integral equation method for estimation of air bubble effects on drag was employed and validated with earlier known experimental data for flat plates and bodies. The qualitative difference in the effects of flow speed and air supply rate on drag of flat plates and bodies was numerically confirmed and explained as a combined effect of the boundary layer density decrease and the increase in its displacement thickness. The numerical analysis shows reduction in the total drag of ventilated bodies with increasing air flux rate up to an optimum, but the drag rise for greater rates. A synergy of friction reduction under attached ventilated cavity and microbubble drag reduction downstream of it was shown.

1.
Butuzov
,
A. A.
,
Gorbachev
,
Y. N.
,
Ivanov
,
A. N.
,
Kaluzhny
,
V. G.
, and
Pavlenko
,
A. N.
, 1990, “
Ship Drag Reduction by Artificial Gas Cavities
,”
Sudostroenie
,
11
, pp.
3
6
, in Russian.
2.
Sverchkov
,
A. V.
, 2005, “
Prospects of Artificial Cavities in Resistance Reduction for Planning Catamarans With Asymmetric Demihulls
,”
International Conference on Fast Sea Transport FAST’2005
,
St. Petersburg, Russia
.
3.
Kopriva
,
J.
,
Amromin
,
E. L.
, and
Arndt
,
R. E. A.
, 2008, “
Improvement of Hydrofoil Performance by Partial Ventilated Cavitation in Steady Flow and Periodic Gusts
,”
ASME J. Fluids Eng.
0098-2202,
130
, p.
031301
.
4.
Amromin
,
E. L.
, 2007, “
Design of Bodies With Drag Reduction by Partial Cavitation as an Inverse Ill-Posed Problem for Velocity Potential
,”
NMSH2007 Conference
,
Ann Arbor, MI
.
5.
Kunz
,
R. F.
,
Deutsch
,
S.
, and
Lindau
,
J. W.
, 2003, “
Two Fluid Modeling of Microbubble Turbulent Drag Reduction
,”
ASME
Paper No. FEDSM2003-45640.
6.
Kawamura
,
T.
, and
Nakatani
,
T.
, 2006, “
Direct Numerical Simulation of Homogeneous Turbulent Shear Flow Containing Bubbles
,”
ASME
Paper No. FEDSM2006-98405.
7.
Ichikawa
,
Y.
,
Sugiyama
,
K.
, and
Mastumoto
,
Y.
, 1995, “
Characteristics of Bubbly Flow Around a Circular Cylinder
,”
Symposium on Multiphase Flow-95
,
Kyoto, Japan
, p.
132
.
8.
Xu
,
J.
,
Maxey
,
M. R.
, and
Karniadakis
,
G. E.
, 2002, “
Numerical Simulation of Turbulent Drag Reduction Using Micro-Bubbles
,”
J. Fluid Mech.
0022-1120,
468
, pp.
271
281
.
9.
Merkle
,
C. L.
, and
Deutsch
,
S.
, 1992, “
Microbubble Drag Reduction in Liquid Turbulent Boundary Layers
,”
Appl. Mech. Rev.
0003-6900,
45
, pp.
103
127
.
10.
Kodama
,
Y.
, 2003, “
On the Skin Friction Reduction Mechanisms of Microbubbles
,”
ASME
Paper No. FEDSM2003-45643.
11.
Sanders
,
W. C.
,
Winkel
,
E.
,
Dowling
,
D. R.
,
Perlin
,
M.
, and
Ceccio
,
S. L.
, 2006, “
Bubble Friction Drag Reduction in a High Reynolds Number Flat Plate Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
552
, pp.
353
380
.
12.
Ceccio
,
S. L.
, 2010, “
Friction Drag Reduction of External Flows With Bubble and Gas Injection
,”
Annu. Rev. Fluid Mech.
0066-4189,
42
, pp.
183
203
.
13.
Moriguchi
,
Y.
, and
Kato
,
H.
, 2002, “
Influence of Microbubble Diameter and Distribution on Frictional Resistance Reduction
,”
J. Mar. Sci. Technol.
0948-4280,
7
, pp.
79
85
.
14.
Schlichting
,
H.
, and
Gersten
,
K.
, 1999,
Boundary Layer Theory
,
Springer
,
New York
.
15.
Cebeci
,
T.
, and
Bradshaw
,
P.
, 1984,
Physical and Computational Aspects of Convective Head Transfer
,
Springer-Verlag
,
Berlin
.
16.
Sanders
,
W. C.
,
Ivy
,
I. M.
,
Ceccio
,
S. L.
,
Dowling
,
D. R.
, and
Perlin
,
M.
, 2003, “
Microbubble Drag Reduction at High Reynolds Numbers
,”
ASME
Paper No. FEDSM2003-45649.
17.
Amromin
,
E. L.
, and
Kovinskaya
,
S. I.
, 2006, “
Numerical Analysis of Reynolds Number Effects on Sheet Cavitation
,”
Sixth International Symposium on Cavitation
,
Wageningen, The Netherlands
.
18.
Arndt
,
R. E. A.
,
Hambelton
,
W. T.
,
Kawakami
,
E.
, and
Amromin
,
E. L.
, 2009, “
Creation and Maintenance of Cavities Under Horizontal Surfaces in Steady and Gust Flows
,”
ASME J. Fluids Eng.
0098-2202,
131
(
11
), p.
111301
.
You do not currently have access to this content.