A computational investigation is conducted to study the patterns of airflow induced by corona discharge in the cross section of a circular tube. The secondary flow induced by corona wind in various flow passages has been the subject of numerous investigations. The flow patterns are often identified by multiple recirculation bubbles. Such flow patterns have also been anticipated for circular cross sections where the corona discharge is activated by an electrode situated at the center of the cross section. In this investigation, it is shown that, contrary to public perception, a symmetric corona discharge does not generate a secondary flow in circular cross sections. This investigation then proceeds to demonstrate that the flow responsible for thermal enhancements in circular tubes often reported in the published literature is induced only when there is a slight asymmetry in the position of the electrode. The present computations are performed in two parts. In part one, the electric field equations are solved using the method of characteristics. In part two, the flow equations are solved using a finite-volume method. It is shown that the method of characteristics effectively eliminates the dispersion errors observed in other numerical solutions. The present computations show that the flow in the eccentric configuration is characterized by a corona jet that is oriented along the eccentricity direction and two recirculation zones situated on either sides of the jet. In addition to the computational approach, a number of analytical solutions are presented and compared with the computational results.
Skip Nav Destination
e-mail: rbaghae@siue.edu
Article navigation
August 2010
Research Papers
Patterns of Airflow in Circular Tubes Caused by a Corona Jet With Concentric and Eccentric Wire Electrodes
Reza Baghaei Lakeh,
Reza Baghaei Lakeh
Department of Mechanical Engineering,
e-mail: rbaghae@siue.edu
Southern Illinois University Edwardsville
, Edwardsville, IL 62026-1805
Search for other works by this author on:
Majid Molki
Majid Molki
Department of Mechanical Engineering,
Southern Illinois University Edwardsville
, Edwardsville, IL 62026-1805
Search for other works by this author on:
Reza Baghaei Lakeh
Department of Mechanical Engineering,
Southern Illinois University Edwardsville
, Edwardsville, IL 62026-1805e-mail: rbaghae@siue.edu
Majid Molki
Department of Mechanical Engineering,
Southern Illinois University Edwardsville
, Edwardsville, IL 62026-1805J. Fluids Eng. Aug 2010, 132(8): 081201 (10 pages)
Published Online: August 16, 2010
Article history
Received:
December 22, 2009
Revised:
June 16, 2010
Online:
August 16, 2010
Published:
August 16, 2010
Citation
Lakeh, R. B., and Molki, M. (August 16, 2010). "Patterns of Airflow in Circular Tubes Caused by a Corona Jet With Concentric and Eccentric Wire Electrodes." ASME. J. Fluids Eng. August 2010; 132(8): 081201. https://doi.org/10.1115/1.4002008
Download citation file:
Get Email Alerts
Related Articles
Heat Transfer Augmentation by Ion Injection in an Annular Duct
J. Heat Transfer (March,2006)
Heat Transfer Enhancement by EHD-Induced Oscillatory Flows
J. Heat Transfer (September,2006)
Augmentation of Thin Falling-Film Evaporation on Horizontal Tubes Using an Applied Electric Field
J. Heat Transfer (May,2000)
Numerical Study of EHD-Enhanced Forced Convection Using Two-Way Coupling
J. Heat Transfer (August,2003)
Related Chapters
Introduction
Vibrations of Linear Piezostructures
Test Methods
Consensus on Operating Practices for the Sampling and Monitoring of Feedwater and Boiler Water Chemistry in Modern Industrial Boilers (CRTD-81)
Cubic Lattice Structured Multi Agent Based PSO Approach for Optimal Power Flows with Security Constraints
International Conference on Software Technology and Engineering, 3rd (ICSTE 2011)