A computational investigation is conducted to study the patterns of airflow induced by corona discharge in the cross section of a circular tube. The secondary flow induced by corona wind in various flow passages has been the subject of numerous investigations. The flow patterns are often identified by multiple recirculation bubbles. Such flow patterns have also been anticipated for circular cross sections where the corona discharge is activated by an electrode situated at the center of the cross section. In this investigation, it is shown that, contrary to public perception, a symmetric corona discharge does not generate a secondary flow in circular cross sections. This investigation then proceeds to demonstrate that the flow responsible for thermal enhancements in circular tubes often reported in the published literature is induced only when there is a slight asymmetry in the position of the electrode. The present computations are performed in two parts. In part one, the electric field equations are solved using the method of characteristics. In part two, the flow equations are solved using a finite-volume method. It is shown that the method of characteristics effectively eliminates the dispersion errors observed in other numerical solutions. The present computations show that the flow in the eccentric configuration is characterized by a corona jet that is oriented along the eccentricity direction and two recirculation zones situated on either sides of the jet. In addition to the computational approach, a number of analytical solutions are presented and compared with the computational results.

1.
Moss
,
R. A.
, and
Grey
,
J.
, 1966, “
Heat Transfer Augmentation by Steady and Alternating Electrode Fields
,”
Proceedings of the 1966 Heat Transfer and Fluid Mechanics Institute
, Santa Clara, CA.
2.
Ohadi
,
M. M.
,
Nelson
,
D. A.
, and
Zia
,
S.
, 1991, “
Heat Transfer Enhancement of Laminar and Turbulent Pipe Flow via Corona Discharge
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
1175
1187
.
3.
Molki
,
M.
, and
Harirchian
,
T.
, 2006 “
Enhancement of Natural Convection Heat Transfer in Triangular Channels using Corona Discharge in Nitrogen Gas
,”
ASME
Paper No. IMECE2006-13830.
4.
Rickard
,
M.
,
Dunn-Rankin
,
D.
,
Weinberg
,
F.
, and
Carleton
,
F.
, 2005, “
Characterization of Ionic Wind
,”
J. Electrost.
0304-3886,
63
, pp.
711
716
.
5.
Brown
,
N. M.
, and
Lai
,
F. C.
, 2009, “
Electrohydrodynamic Gas Pump in a Vertical Tube
,”
J. Electrost.
0304-3886,
67
, pp.
709
714
.
6.
Thomson
,
J. J.
, 1945,
Conduction of Electricity Through Gases
,
Cambridge University Press
,
New York
, p.
267
.
7.
Chun
,
Y. N.
,
Chang
,
J.
,
Berezin
,
A. A.
, and
Mizeraczyk
,
J.
, 2007, “
Numerical Modeling of Near Corona Wire Electrohydrodynamic Flow in a Wire-Plate Electrostatic Precipitator
,”
IEEE Trans. Dielectr. Electr. Insul.
1070-9878,
14
(
1
), pp.
119
124
.
8.
Niewulis
,
A.
,
Podlinski
,
J.
,
Kocik
,
M.
,
Barbucha
,
R.
,
Mizeraczyk
,
J.
, and
Mizuno
,
A.
, 2007, “
EHD Flow Measured by 3D PIV in a Narrow Electrostatic Precipitator With Longitudinal-to-Flow Wire Electrode and Smooth or Flocking Grounded Plane Electrode
,”
J. Electrost.
0304-3886,
65
, pp.
728
734
.
9.
Podliński
,
J.
,
Niewulis
,
A.
, and
Mizeraczyk
,
J.
, 2009, “
Electrohydrodynamic Flow and Particle Collection Efficiency of a Spike-Plate Type Electrostatic Precipitator
,”
J. Electrost.
0304-3886,
67
, pp.
99
104
.
10.
Podlinski
,
J.
,
Niewulis
,
A.
, and
Mizeraczyk
,
J.
, 2009, “
Electrohydrodynamic Flow in a Wire-Plate Non-Thermal Plasma Reactor Measured by 3D PIV Method
,”
Eur. Phys. J. D
1434-6060,
54
, pp.
153
158
.
11.
Podlinski
,
J.
,
Dekowski
,
J.
,
Mizeraczyk
,
J.
,
Brocilo
,
D.
, and
Chang
,
J.
, 2006, “
Electrohydrodynamic Gas Flow in a Positive Polarity Wire-Plate Electrostatics Precipitator and the Related Dust Particle Collection Efficiency
,”
J. Electrost.
0304-3886,
64
, pp.
259
262
.
12.
Chang
,
J. S.
,
Brocilo
,
D.
,
Urashima
,
K.
,
Dekowski
,
J.
,
Podlinski
,
J.
,
Mizeraczyk
,
J.
, and
Touchard
,
G.
, 2006, “
On-Set of EHD Turbulence for Cylinder in Cross Flow Under Corona Discharge
,”
J. Electrost.
0304-3886,
64
, pp.
569
573
.
13.
Marco
,
S. M.
,
Velkoff
,
H. R.
, 1963, “
Effect of Electrostatic Fields on Free Convection Heat Transfer From Flat Plate
,”
ASME
Paper No. 63-HT-9.
14.
Owsenek
,
B. L.
, and
Seyed-Yagoobi
,
J.
, 1997, “
Theoretical and Experimental Study of Electrohydrodynamic Heat Transfer Enhancement Through Wire-Plate Corona Discharge
,”
ASME J. Heat Transfer
0022-1481,
119
, pp.
604
611
.
15.
Molki
,
M.
, and
Harirchian
,
T.
, 2005, “
The Enhancement Effect of Corona Discharge on Natural Convection Heat Transfer in Triangular Channels
,”
ASME
Paper No. IMECE2005-80070.
16.
Takimoto
,
A.
,
Tada
,
Y.
,
Hayashi
,
Y.
, and
Yamada
,
K.
, 1991, “
Convective Heat Transfer Enhancement by a Corona Discharge
,”
Heat Transfer-Jpn. Res.
0096-0802,
20
, pp.
18
35
.
17.
Nelson
,
D. A.
,
Zia
,
S.
,
Whipple
,
R. L.
, and
Ohadi
,
M. M.
, 1998, “
Corona Discharge Effects on Heat Transfer and Pressure Drop in Tube Flows
,”
J. Enhanced Heat Transfer
1065-5131,
7
, pp.
81
95
.
18.
Kasayapanand
,
N.
, 2007, “
Numerical Modeling of Natural Convection in Partially Open Square Cavities Under Electric Field
,”
Int. Commun. Heat Mass Transfer
0735-1933,
34
, pp.
630
643
.
19.
Kasayapanand
,
N.
, and
Kiatsiriroat
,
T.
, 2007, “
Optimized Mass Flux Ratio of Double-Flow Solar Air Heater With EHD
,”
Energy
0360-5442,
32
, pp.
1343
1351
.
20.
Zhang
,
K.
,
Adamiak
,
K.
, and
Castle
,
G. S. P.
, 2007, “
Numerical Modeling of Negative-Corona Discharge in Oxygen Under Different Pressures
,”
J. Electrost.
0304-3886,
65
, pp.
174
181
.
21.
Zhang
,
K.
, and
Adamiak
,
K.
, 2007, “
A Multi-Species DC Stationary Model for Negative Corona Discharge in Oxygen; Point-Plane Configuration
,”
J. Electrost.
0304-3886,
65
, pp.
459
464
.
22.
Adamiak
,
K.
, and
Atten
,
P.
, 2004, “
Simulation of Corona Discharge in Point-Plane Configuration
,”
J. Electrost.
0304-3886,
61
, pp.
85
98
.
23.
Zhao
,
L.
, and
Adamiak
,
K.
, 2005, “
EHD Flow in Air Produced by Electric Corona Discharge in Pin-Plate Configuration
,”
J. Electrost.
0304-3886,
63
, pp.
337
350
.
24.
Molki
,
M.
,
Harirchian
,
T.
, and
Chitta
,
V. L.
, 2006, “
An Improved Solution of Electrodynamics Equations for Corona Discharge Using Explicit Artificial Viscosity
,”
Numer. Heat Transfer, Part B
1040-7790,
50
, pp.
315
332
.
25.
Molki
,
M.
, and
Bhamidipati
,
K. L.
, 2004, “
Enhancement of Convective Heat Transfer in the Developing Region of Circular Tubes Using Corona Wind
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4301
4314
.
26.
Baghaei Lakeh
,
R.
, and
Molki
,
M.
, 2009, “
Patterns of Secondary Flow Field in a Circular Tube Caused by Corona Wind Using the Method of Characteristics
,”
ASME
IMECE2009-12611.
27.
Yazdani
,
M.
, and
Seyed-Yagoobi
,
J.
, 2008, “
An Electrically Driven Impinging Liquid Jet for Direct Cooling of Heated Surfaces
,”
IEEE Industry Applications Society Annual Meeting, IAS ‘08
, pp.
1
7
.
28.
Ohyama
,
R.
,
Fukumoto
.
M.
, 2004 “
An Experimental Study on Electrodynamically Induced Silicon Oil Vapor Flow Under DC Corona Discharge
,”
Annual Report Conference on Electrical Insulation and Dielectric Phenomena
, pp.
126
129
.
29.
Yamamoto
,
T.
,
Okuda
,
M.
, and
Okubo
,
M.
, 2003, “
Three-Dimensional Ionic Wind and Electrodynamics of Tuft/Point Corona Electrostatic Precipitator
,”
IEEE Trans. Ind. Appl.
0093-9994,
39
, pp.
1602
1607
.
30.
Go
,
D. B.
,
Maturana
,
R. A.
,
Fisher
,
T. S.
, and
Garimella
,
S. V.
, 2008, “
Enhancement of External Forced Convection by Ionic Wind
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
6047
6053
.
31.
Mason
,
E. A.
, and
McDaniel
,
E. W.
, 1988,
Transport Properties of Ions in Gases
, 9th ed.,
Wiley
,
New York
.
32.
Celik
,
I. B.
, 2008, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
0098-2202,
130
, p.
078001
.
33.
Roache
,
P. J.
, 1993, “
A Method for Uniform Reporting of Grid Refinement Studies
,”
Proceedings of Quantification of Uncertainty in Computation Fluid Dynamics
,
I
Celik
,
C. J.
Chen
,
P. J.
Roache
, and
G.
Scheurer
, eds., ASME Publ. No. FED-
158
,
ASME Fluids Engineering Division Summer Meeting
,
Washington, DC
, June 23–24,
ASME
,
New York
.
34.
Panton
,
R. L.
, 1996,
Incompressible Flow
, 2nd ed.,
Wiley
,
New York
.
35.
Bejan
,
A.
, 2004,
Convective Heat Transfer
, 3rd ed.,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.