The cavitating flows around a highly skewed model marine propeller in both uniform flow and wake flow have been simulated by applying a mass transfer cavitation model based on Rayleigh–Plesset equation and k-ω shear stress transport (SST) turbulence model. From comparison of numerical results with the experiment, it is seen that the thrust and torque coefficients of the propeller are predicted satisfactory. It is also clarified from unsteady simulation of cavitating flow around the propeller in wake flow that the whole process of cavitating-flow evolution can be reasonably reproduced including sheet cavitation and tip vortex cavitation observed in the experiments. Furthermore, to study the effect of pressure fluctuation on the surrounding, pressure fluctuations induced by the cavitation as well as the propeller rotation are predicted at three reference positions above the propeller for comparison with the experimental data: The amplitudes of the dominant components corresponding to the first, second, and third blade passing frequencies were satisfactorily predicted. It is noted that the maximum difference of pressure fluctuation between the calculation and experiment reached 20%, which might be acceptable by usual engineering applications.

1.
Kim
,
K. H.
,
Turnock
,
S.
,
Ando
,
J.
,
Becchi
,
P.
,
Korkut
,
E.
,
Minchev
,
A.
,
Semionicheva
,
E. Y.
,
Van
,
S. H.
, and
Zhou
,
W. X.
, 2008, “
The Propulsion Committee: Final Report and Recommendations to the 25th ITTC
,”
Proceedings of the 25th ITTC
, Fukuoka, Japan.
2.
Huse
,
E.
, 1972, “
Pressure Fluctuations on the Hull Induced by Cavitating Propellers
,”
Norwegian Ship Model Experiment Tank
, Report No. 111.
3.
Andersen
,
P.
,
Bark
,
G.
,
Chang
,
B. J.
,
Felice
,
F. D.
,
Friesch
,
J.
,
Kim
,
K. H.
, and
Sumitomo
,
N. S.
, 2002, “
The Specialist Committee on Cavitation Induced Pressures: Final Report and Recommendations to the 23rd ITTC
,”
Proceedings of the 23rd ITTC
, Venice, Italy.
4.
Bark
,
G.
,
Caprino
,
G.
,
Friesch
,
J.
,
Lee
,
H. G.
,
Sadovnikov
,
D.
,
Wilson
,
M. B.
, and
Yamaguchi
,
H.
, 1998, “
The Specialist Committee on Cavitation Induced Pressure Fluctuation: Final Report and Recommendations to the 22nd ITTC
,”
Proceedings of the 22nd ITTC
, Grenoble, France.
5.
Pereira
,
F.
,
Salvatore
,
F.
, and
Di Felice
,
F.
, 2004, “
Measurement and Modeling of Propeller Cavitation in Uniform Inflow
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
671
679
.
6.
Lindau
,
J. W.
,
Boger
,
D. A.
,
Medvitz
,
R. B.
, and
Kunz
,
R. F.
, 2005, “
Propeller Cavitation Breakdown Analysis
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
995
1002
.
7.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
, 2000, “
A Preconditioned Navier-Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
0045-7930,
29
(
8
), pp.
849
875
.
8.
Watanabe
,
T.
,
Kawamura
,
T.
,
Takekoshi
,
Y.
,
Maeda
,
M.
, and
Rhee
,
S. H.
, 2003, “
Simulation of Steady and Unsteady Cavitation on a Marine Propeller Using a RANS CFD Code
,”
Proceedings of the Fifth International Symposium on Cavitation
, Osaka, Japan.
9.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H. Y.
, and
Jiang
,
Y.
, 2002, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
617
624
.
10.
Rhee
,
S. H.
,
Kawamura
,
T.
, and
Li
,
H. Y.
, 2005, “
Propeller Cavitation Study Using an Unstructured Grid Based Navier-Stoker Solver
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
986
994
.
11.
Kawamura
,
T.
,
Takekoshi
,
Y.
,
Yamaguchi
,
H.
,
Minowa
,
T.
,
Maeda
,
M.
,
Fujii
,
A.
,
Kimura
,
K.
, and
Taketani
,
T.
, 2006, “
Simulation of Unsteady Cavitating Flow Around Marine Propeller Using a RANS CFD Code
,”
Proceedings of the Sixth International Symposium on Cavitation
, Wageningen, The Netherlands.
12.
Salvatore
,
F.
,
Streckwall
,
H.
, and
Terwisga
,
T. V.
, 2009, “
Propeller Cavitation Modelling by CFD-Results From VIRTUE 2008 Rome Workshop
,”
Proceedings of the First International Symposium on Marine Propulsors
, Trondheim, Norway.
13.
Kawamura
,
T.
, and
Kiyokawa
,
T.
, 2008, “
Numerical Prediction of Hull Surface Pressure Fluctuation Due To Propeller Cavitation
,”
Proceedings of the Japan Society of Naval Architects and Ocean Engineers
, Nagasaki, Japan.
14.
Sato
,
K.
,
Oshima
,
A.
,
Egashira
,
H.
, and
Takano
,
S.
, 2009, “
Numerical Prediction of Cavitation and Pressure Fluctuation Around Marine Propeller
,”
Proceedings of the Seventh International Symposium on Cavitation
, Ann Arbor, MI.
15.
Bensow
,
R. E.
, and
Bark
,
G.
, 2010, “
Implicit LES Predictions of the Cavitating Flow on a Propeller
,”
ASME J. Fluids Eng.
0098-2202,
132
, p.
041302
.
16.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T. J.
, 1997, “
Turbulence Modeling Validation, Testing, and Development
,” NASA Technical Memorandum No. 110446.
17.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
(
8
), pp.
1598
1605
.
18.
Hong
,
F. W.
, and
Dong
,
S. T.
, 2010, “
Numerical Analysis for Circulation Distribution of Propeller Blade
,”
Journal of Hydrodynamics, Ser. B
,
22
(
4
), pp.
488
493
.
19.
Mejri
,
I.
,
Bakir
,
F.
,
Rey
,
R.
, and
Belamri
,
T.
, 2006, “
Comparison of Computational Results Obtained From a Homogeneous Cavitation Model With Experimental Investigations of Three Inducers
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
1308
1323
.
20.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
, 2004, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Proceedings of the International Conference on Multiphase Flow
, Yokohama, Japan.
21.
Ukon
,
Y.
, and
Yuasa
,
H.
, 1994, “
Pressure Distribution and Blade Stress on a High Skewed Propeller
,”
Proceedings of the 19th Symposium on Naval Hydrodynamics
, Seoul, Korea.
22.
Ukon
,
Y.
,
Kudo
,
T.
,
Yuasa
,
H.
, and
Kamilrisa
,
H.
, 1991, “
Measurement of Pressure Distribution on Full Scale Propeller
,”
Proceedings of the Society of Naval Architects and Marine Engineers
, Virginia Beach, VA.
23.
Kurobe
,
Y.
,
Ukon
,
Y.
,
Koyama
,
K.
, and
Makino
,
M.
, 1983, “
Measurement of Cavity Volume and Pressure Fluctuations on a Model of the Training Ship “SEIUN-MARU” With Reference to Full Scale Measurement
,”
Ship Research Institute
, Technique Report No. (NAID)110007663078.
24.
Lifante
,
C.
,
Frank
,
T.
, and
Rieck
,
K.
, 2008, “
On Influence of Turbulence Modelling on Cavitation Prediction for Flow Around P1356 Ship Propeller
,”
Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering
, Estoril, Portugal.
25.
ANSYS Corporation
, 2006, ANSYS CFX Help Documentations.
26.
Coutier-Delgosha
,
O.
,
Deniset
,
F.
,
Astolfi
,
J. A.
, and
Leroux
,
J. B.
, 2007, “
Numerical Prediction of Cavitating Flow on a Two-Dimensional Symmetrical Hydrofoil and Comparison to Experiments
,”
ASME J. Fluids Eng.
0098-2202,
129
, pp.
279
292
.
27.
Vanka
,
S. P.
, 1986, “
Block-Implicit Multigrid Solution of Navier-Stokes Equations in Primitive Variables
,”
J. Comput. Phys.
0021-9991,
65
(
1
), pp.
138
158
.
28.
Kudo
,
T.
,
Ukon
,
Y.
,
Kurobe
,
Y.
, and
Tanibayashi
,
H.
, 1989, “
Measurement of Shape of Cavity on a Model Propeller Blade
,”
J. Soc. Nav. Archit. Jpn.
0514-8499,
166
, pp.
93
103
.
You do not currently have access to this content.