Modeling high Reynolds number (Re) flow is important for understanding wind loading on structures, transport and dispersion of airborne contaminants, and turbulence patterns in urban areas. This study reports a high fidelity computational fluid dynamics simulation of flow about a surface mounted cube for a Reynolds number sufficiently high to represent atmospheric flow conditions. Results from detached eddy simulations (DES) and zonal DES that compare well with field experiment data are presented. A study of reducing grid resolution indicates that further grid refinement would not make a significant difference in the flow field, adding confidence in the accuracy of the results. We additionally consider what features are captured by coarser grids. The conclusion is that these methods can produce high fidelity simulations of high Reynolds number atmospheric flow conditions with a modest grid resolution.

1.
Castro
,
I. P.
, and
Robins
,
A. G.
, 1979, “
Flow Around a Surface Mounted Cube in Uniform and Turbulent Streams
,”
J. Fluid Mech.
0022-1120,
79
, pp.
305
335
.
2.
Murakam
,
S.
, 1997, “
Current Status and Future Trends in Computational Wind Engineering
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
67–68
, pp.
3
34
.
3.
Ferziger
,
J. H.
, and
Peric
,
M.
, 1999,
Computational Methods for Fluid Dynamics
, 2nd ed.,
Springer
,
Germany
, pp.
274
277
.
4.
Tsuchiya
,
M.
,
Murakami
,
S.
,
Mochida
,
A.
,
Kondo
,
K.
and
Ishida
,
Y.
, 1997, “
Development of a New k-ε Model for Flow and Pressure Fields Around Bluff Body
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
67–68
, pp.
169
182
.
5.
Lakehal
,
D.
, and
Rodi
,
W.
, 1997, “
Calculation of the Flow Past a Surface-Mounted Cube With Two-Layer Turbulence Models
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
67–68
, pp.
65
78
.
6.
Yu
,
D. -h.
, and
Kareem
,
A.
, 1997, “
Numerical Simulation of Flow Around Rectangular Prism
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
67–68
, pp.
195
208
.
7.
Pielke
,
R. A.
, and
Nicholls
,
M. E.
, 1997, “
Use of Meteorological Models in Computational Wind Engineering
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
67–68
, pp.
363
372
.
8.
Saha
,
A. K.
,
Biswas
,
G.
, and
Muralidhar
,
K.
, 2001, “
Two-Dimensional Study of the Turbulent Wake Behind a Square Cylinder Subject to Uniform Shear
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
595
603
.
9.
Modi
,
V. J.
, and
Deshpande
,
V. S.
, 2001, “
Fluid Dynamics of a Cubic Structure as Affected by Momentum Injection and Height
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
89
, pp.
445
470
.
10.
Martinuzzi
,
R.
, and
Tropea
,
C.
, 1993, “
The Flow Around Surface-Mounted, Prismatic Obstacles Placed in a Fully Developed Channel Flow
,”
ASME J. Fluids Eng.
0098-2202,
115
, pp.
85
92
.
11.
Krajnovic
,
S.
, and
Davidson
,
L.
, 2002, “
Large-Eddy Simulation of the Flow About a Bluff Body
,”
AIAA J.
0001-1452,
40
, pp.
927
936
.
12.
Shah
,
K. B.
, and
Ferziger
,
J. H.
, 1997, “
A Fluid Mechanicians View of Wind Engineering: Large Eddy Simulation of Flow Past a Cubic Obstacle
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
67–68
, pp.
211
224
.
13.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Bender
,
R.
, 2003, “
A Scale-Adaptive Simulation Model for Turbulent Flow Predictions
,”
41st Aerospace Science Meeting and Exhibit
, AIAA Paper No. 2003-0767.
14.
Richards
,
P. J.
,
Hoxey
,
R. P.
, and
Short
,
L. J.
, 2001, “
Wind Pressures on a 6 m Cube
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
89
, pp.
1553
1564
.
15.
Richards
,
P. J.
,
Hoxey
,
R. P.
, and
Short
,
L. J.
, 2005, “
A 6 m Cube in an Atmospheric Boundary Layer Flow. Part 1. Full-Scale and Wind Tunnel Results
,”
Wind Struct.
1226-6116,
5
, pp.
165
176
.
16.
Richards
,
P. J.
, and
Hoxey
,
R. P.
, 2002, “
Unsteady Flow on the Sides of a 6 m Cube
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
90
, pp.
1855
1866
.
17.
Richards
,
P. J.
, and
Hoxey
,
R. P.
, 2000, “
Spectral Models for the Neutral Atmospheric Surface Layer
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
87
, pp.
167
185
.
18.
Richards
,
P. J.
, and
Hoxey
,
R. P.
, 2004, “
Quasi-Steady Theory and Point Pressures on a Cubic Building
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
92
, pp.
1173
1190
.
19.
Wright
,
N. G.
, and
Easom
,
G. J.
, 2003, “
Nonlinear k-ε Turbulence Model Results for Flow Over a Building at Full-Scale
,”
Appl. Math. Model.
0307-904X,
27
, pp.
1013
1033
.
20.
Richards
,
P. J.
,
Quinn
,
A. D.
, and
Parker
,
S.
, 2002, “
A 6 m Cube in an Atmospheric Boundary Layer Flow. Part 2 Computational Solutions
,”
Wind Struct.
1226-6116,
5
, pp.
177
192
.
21.
Spalart
,
P. R.
,
Jou
,
W. -H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
, 1997, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
First AFOSR International Conference on DNS/LES
, Ruston, LA,
Advances in DNS/LES
,
C.
Liu
and
Z.
Liu
, eds.,
Greyden
,
Columbus, OH
, pp.
137
147
.
22.
Slimon
,
S.
, 2003, “
Computation of Internal Separated Flows Using a Zonal Detached Eddy Simulation Approach
,”
Proceedings of IMECE’03
, Paper No. IMECE2003-43881.
23.
ACUSIM, 2005, ACUSOLVE™ v1.7 Command Reference Manual, ACUSIM Software Inc., Mountain View, CA.
24.
Lyons
,
D. C.
,
Peltier
,
L. J.
,
Zajaczkowski
,
F. J.
, and
Paterson
,
E. G.
, 2009, “
Assessment of DES Models for Separated Flow From a Hump in a Turbulent Boundary Layer
,”
ASME J. Fluids Eng.
0098-2202,
131
, p.
111203
.
25.
Strelets
,
M.
, 2001, “
Detached Eddy Simulation of Massively Separated Flows
,”
39th AIAA Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 2001-0879.
26.
Ferziger
,
J. H.
, and
Peric
,
M.
, 1999,
Computational Methods for Fluid Dynamics
, 2nd ed.,
Springer
,
Germany
.
27.
Dubief
,
Y.
, and
Delcayre
,
F.
, 2000, “
On Coherent-Vortex Identification in Turbulence
,”
J. Turbul.
1468-5248,
1
, pp.
1
22
.
28.
Richards
,
P. J.
,
Hoxey
,
R. P.
,
Connell
,
B. D.
, and
Lander
,
D. P.
, 2007, “
Wind-Tunnel Modelling of the Silsoe Cube
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
95
, pp.
1384
1399
.
29.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1974, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
3
, pp.
269
289
.
30.
Yakhot
,
V.
, and
Orszag
,
S. A.
, 1986, “
Renormalization Group Analysis of Turbulence. I. Basic Theory
,”
J. Sci. Comput.
0885-7474,
1
, pp.
3
51
.
You do not currently have access to this content.