The objective of the present research is to develop new fundamental knowledge of the entropy generation process in laminar flow with significant fluctuations (called pre-transition) and during transition prematurely induced by strong freestream turbulence (bypass transition). Results of direct numerical simulations are employed. In the pre-transitional boundary layer, the perturbations by the streaky structures modify the mean velocity profile and induce a “quasi-turbulent” contribution to indirect dissipation. Application of classical laminar theory leads to underprediction of the entropy generated. In the transition region the pointwise entropy generation rate (S′′′)+ initially increases near the wall and then decreases to correspond to the distribution predicted for a fully-turbulent boundary layer as the flow progresses downstream. In contrast to a developed turbulent flow, the term for turbulent convection in the turbulence kinetic energy balance is significant and can play an important role in some regions of the transitioning boundary layer. More turbulent energy is produced than dissipated and the excess is convected downstream as the boundary layer grows. Since it is difficult to measure and predict true turbulent dissipation rates (and hence, entropy generation rates) exactly other than by expensive direct numerical simulations, a motivation for this research is to evaluate approximate methods for possible use in experiments and design. These new results demonstrate that an approximate technique, used by many investigators, overestimates the dissipation coefficient Cd by up to seventeen per cent. For better predictions and measurements, an integral approach accounting for the important turbulent energy flux is proposed and validated for the case studied.

References

1.
Bejan
,
A.
, 1982,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
2.
Bejan
,
A.
, 1996,
Entropy Generation Minimization
,
CRC
,
Boca Raton
.
3.
Adeyinka
,
O. B.
, and
Naterer
,
G. F.
, 2004,”
Modeling of Entropy Production in Turbulent Flows
,“
ASME J. Fluids Eng.
,
126
, pp.
893
899
.
4.
Naterer
,
G. F.
, and
Camberos
,
J. A.
, 2008,
Entropy-Based Design and Analysis of Fluids Engineering Systems
.
CRC
,
Boca Raton
.
5.
McEligot
,
D. M.
,
Walsh
,
E. J.
,
Laurien
,
E.
, and
Spalart
,
P. R.
, 2008, “
Entropy Generation in the Viscous Parts of a Turbulent Boundary Layer
,”
ASME J. Fluids Eng.
,
130
, pp.
061205
-1–061205-
12
.
6.
McEligot
,
D. M.
,
Nolan
,
K.
,
Walsh
,
E. J.
, and
Laurien
,
E.
, 2008, “
Effects of Pressure Gradients on Entropy Generation in the Viscous Layers of Turbulent Wall Flows
,”
Int. J. Heat Mass Transfer
,
51
, pp.
1104
1114
.
7.
Walsh
,
E. J.
, and
McEligot
,
D. M.
, 2008, “
Relation of Entropy Generation to Wall ‘Laws’ for Turbulent Flows
,”
Int. J. Comput. Fluid Dyn.
22
, pp.
649
657
.
8.
Walsh
,
E. J.
, and
McEligot
,
D. M.
, 2009, “
A New Correlation for Entropy Generation in Turbulent Shear Layers
,”
Int. J. Eng. Fluid Mech
36
, pp.
566
572
.
9.
McEligot
,
D. M.
,
Brodkey
,
R. S.
, and
Eckelmann
,
H.
, 2009, “
Laterally Converging Duct Flows: Part 4. Temporal Behavior in the Viscous Layer
,”
J. Fluid Mech.
,
634
, pp.
433
461
.
10.
Kock
,
F.
, and
Herwig
,
H.
, 2005, “
Entropy Production Calculation for Turbulent Shear Flows and their Implementation into CFD Codes
,”
Int. J. Heat Fluid Flow
,
26
, pp.
672
680
.
11.
Moore
,
J.
, and
Moore
,
J. G.
, 1983, “
Entropy Production Rates from Viscous Flow Calculations. Part I. A Turbulent Boundary Layer Flow
,” ASME Paper 83-GT-70.
12.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
13.
O’Donnell
,
F. K.
, and
Davies
,
M. R. D.
, 1999, “
Measurements of Turbine Blade Aerodynamic Entropy Generation Rate
,”
Proc., I. Mech. E., C557/055, 3rd European Conf. Turbomachinery
,
Professional Engineering Publishing, London, UK
,
London
, pp.
43
53
.
14.
Stieger
,
R. D.
, and
Hodson
,
H. P.
, 2003, “
Unsteady Dissipation Measurements on a Flat Plate subject to Wake Passing
,”
Proc., Inst. Mech. Eng., Part A
,
217
, pp.
413
419
.
15.
Hyhlik
,
T.
, and
Marsik
,
F.
, 2006, “
New Approach to Turbulence Model Testing based on the Entropy Production and the Analysis of Simple Wall Flows
,”
Turbulence, Heat and Mass Transfer 5
,
K.
Hanjalic
,
Y.
Nagano
and
S.
Jakirlic
, eds.,
Begell House
,
New York
, pp.
377
380
.
16.
Schlichting
,
H.
, 1968,
Boundary Layer Theory
, 6th ed.,
McGraw-Hill
,
New York
.
17.
Morkovin
,
M. V.
, 1969, “
On the Many Faces of Transition
,”
Viscous Drag Reduction
,
C. S.
Wells
, ed.,
Plenum
,
New York
, pp.
1
31
.
18.
Klebanoff
,
P. S.
, 1971, “
Effect of Freestream Turbulence on the Laminar Boundary Layer
,”
Bull. APS
,
10
(
11
), p.
1323
.
19.
Kendall
,
J. M.
, 1985, “
Experimental Study of Disturbances Produced in a Pre-transitional Laminar Boundary Layer by Weak Free-stream Turbulence
,” AIAA Paper 85-1695.
20.
Kendall
,
J. M.
, 1998, “
Experiments on Boundary Layer Receptivity to Free-stream Turbulence
,” AIAA Paper 98-0530.
21.
Schmid
,
P. J
, and
Henningson
,
D. S.
, 2001,
Stability and Transition in Shear Flows
,
Springer
,
New York
.
22.
Roach
,
P. E.
, and
Brierley
,
D. H.
, 1990, “
The Influence of a Turbulent Free-stream on Zero Pressure Gradient Transitional Boundary Layer Development, Part I: Test Cases T3A & T3B
,”
Proc., 1st ERCOFTAC Workshop on Numerical Simulation of Unsteady Flows and Transition to Turbulence and Combustion
,
O.
Pironneau
,
W.
Rodi
,
I. L.
Ryhming
,
A. M.
Savill
and
T. V.
Troung
, eds.,
Cambridge University. Press, Cambridge
, pp.
319
347
.
23.
Mayle
,
R. E.
, and
A.
Schulz
, 1997, “
The Path to Predicting Bypass Transition
,”
ASME J. Turbomach.
119
, pp.
405
411
.
24.
Hernon
,
D.
, and
Walsh
,
E. J.
, 2007, “
Enhanced Energy Dissipation Rates in Laminar Boundary Layers subjected to Elevated Levels of Free Stream Turbulence
,”
Fluid Dynamics Research
,
39
, pp.
305
319
.
25.
Hernon
,
D.
,
Walsh
,
E. J.
, and
McEligot
,
D. M.
, 2007, “
Instantaneous Fluctuation Velocity and Skewness Distributions Upstream of Transition Onset
,”
Int. J. Heat Fluid Flow
,
28
, pp.
1272
1279
.
26.
Bradshaw
,
P.
, 1967, “
The Turbulence Structure of Equilibrium Boundary Layers
,”
J. Fluid Mech.
,
29
, pp.
625
645
.
27.
Narasimha
,
R.
, 1985, “
The Laminar-Turbulent Transition Zone in the Boundary Layer
,”
Prog. Aerosp. Sci.
,
22
, pp.
29
80
.
28.
Suder
,
K. L.
,
O’Brien
,
J. E.
, and
Reshotko
,
E.
, 1988, “
Experimental Study of Bypass Transition in a Boundary Layer
,” NASA Tech. Memo. 100913.
29.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
113
, pp.
509
537
.
30.
Ames
,
F. E.
, and
Plesniak
,
M. W.
, 1997, “
The Influence of Large-scale, High-intensity Turbulence on Vane Aerodynamic Losses, Wake Growth and the Exit Turbulence Parameters
,”
ASME J. Turbomach.
119
, pp.
182
192
.
31.
Wang
,
H. P.
,
Goldstein
,
R. J.
, and
Olson
,
S. J.
, 1999, “
Effect of High Free-stream Turbulence with Large Length Scale on Blade Heat/Mass Transfer
,”
ASME J. Turbomach.
121
, pp.
217
224
.
32.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
, 2001, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
212
.
33.
Matsubara
,
M.
, and
Alfredsson
,
P. H.
, 2001, “
Disturbance Growth in Boundary Layers Subjected to Free-Stream Turbulence
,”
J. Fluid Mech.
,
430
, pp.
149
168
.
34.
Volino
,
R. J.
,
Schultz
,
M. P.
, and
Pratt
,
C. M.
, 2003, “
Conditional Sampling in a Transitional Boundary Layer Under High Freestream Turbulence Conditions
,”
ASME J. Fluids Eng.
,
125
, pp.
28
37
.
35.
Brandt
,
L.
Schlatter
,
P.
, and
Henningson
,
D. S.
, 2004. “
Transition in Boundary Layers Subject to Free-Stream Turbulence
,”
J. Fluid Mech.
,
517
, pp.
167
198
.
36.
Schlatter
,
P.
,
Brandt
,
L.
,
de Lange
,
H. C.
, and
Henningson
,
D. S.
, 2008, “
On Streak Breakdown in Bypass Transition
,”
Phys. Fluids
,
20
, pp.
101505
-1–101505-
15
.
37.
Walsh
,
E.
,
Myose
,
R.
, and
Davies
,
M. R. D.
, 2002, “
A Prediction Method for the Local Entropy Generation Rate in a Transitional Boundary Layer with a Free Stream Pressure Gradient
,” ASME Paper GT-2002-30231.
38.
Launder
,
B. E.
, and
Sandham
,
N. D.
, eds., 2002,
Closure Strategies for Turbulent and Transitional Flows
,
Cambridge University Press, Cambridge
.
39.
Savill
,
A. M.
, 1993, “
Some Recent Progress in the Turbulence Modeling of By-Pass Transition
,”
Near-Wall Turbulent Flows
,
R. M. C.
So
and
B. E.
Launder
, eds.,
Elsevier
,
New York
, pp.
829
848
.
40.
Savill
,
A. M.
, 2002a, “
By-Pass Transition Using Conventional Closures
,”
Closure Strategies for Turbulent and Transitional Flows
,
B. E.
Launder
and
N. D.
Sandham
, eds.,
Cambridge University Press
,
Cambridge
, Ch. 17, pp.
464
492
.
41.
Savill
,
A. M.
2002b, “
New Strategies in Modeling By-Pass Transition
,”
Closure Strategies for Turbulent and Transitional Flows
,
B. E.
Launder
and
N. D.
Sandham
, eds.,
Cambridge University Press
,
Cambridge
, Ch. 18, pp.
493
521
.
42.
Lardeau
,
S.
,
Li
,
N.
, and
Leschziner
,
M. A.
, 2007, “
Large Eddy Simulation of Transitional Boundary Layers at High Free-stream Turbulence Intensity and Implications for RANS Modeling
,”
ASME J. Turbomach.
129
, pp.
311
317
.
43.
Walters
,
D. K.
, and
Cokljat
,
D.
, 2008, “
A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flow
,”
ASME J. Fluids Eng.
,
130
, pp.
121401
-1–121401-
14
.
44.
Turner
,
C.
, and
Prosser
,
R.
, 2009, “
The Application of the Laminar Kinetic Energy to Turbulent Transition Prediction
,”
Turbulence, Heat and Mass Transfer 6
,
K.
Hanjalic
,
Y.
Nagano
and
S.
Jakirlic
, eds.,
Begell House
,
New York
, pp.
209
212
.
45.
Pironneau
,
O.
,
Rodi
,
W.
,
Ryhming
,
I. L.
,
Savill
,
A. M.
, and
Troung
,
T. V.
, eds., 1992,
Numerical Simulation of Unsteady Flows and Transition to Turbulence
,
Cambridge University Press, Cambridge
.
46.
Nolan
,
K.
,
Walsh
,
E. J.
,
McEligot
,
D. M.
, and
Volino
,
R. J.
, 2007, “
Predicting Entropy Generation Rates in Transitional Boundary Layers Based on Intermittency
,”
ASME J. Turbomach.
129
(
3
), pp.
512
517
.
47.
Cebeci
,
T.
, and
Bradshaw
,
P.
, 1984,
Physical andcComputational Aspects of Convective Heat Transfer
,
Springer
,
New York
.
48.
Gersten
,
K.
, and
Herwig
,
H.
, 1992,
Strömungsmechanik
,
Vieweg, Braunschweig
.
49.
Bradshaw
,
P.
, 1995, “
Addendum to ‘A Note on Turbulent Energy Dissipation in the Viscous Near Wall Region’ [Phys. Fluids A5, 3305 (1993)]
,”
Phys. Fluids
,
7
, p.
2297
.
50.
Emmons
,
H. W.
, 1951. “
The Laminar-Turbulent Transition in a Boundary Layer
,”
J. Aero. Sci.
,
18
, pp.
490
498
.
51.
Liepmann
,
H. W.
, 1943, “
Investigations on Laminar Boundary-Layer Stability and Transition on Curved Boundaries
,” NACA Wartime Report W-107, ACR No. 3H30.
52.
Fransson
,
J. H. M.
,
Matsubara
,
M.
, and
Alfredsson
,
P. H.
, 2005, “
Transition Induced by Free-Stream Turbulence
,”
J. Fluid Mech.
,
527
, pp.
1
25
.
53.
Chevalier
,
M.
,
Schlatter
,
P.
,
Lundbladh
,
A.
, and
Henningson
,
D. S.
, 2007, “
SIMSON: A Pseudo-spectral Solver for Incompressible Boundary Layer Flows
,”
Tech. Report KTH/MEK/TR-07/07-SE, KTH Mechanics
,
Stockholm
.
54.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R. D.
, 1987, “
Turbulent Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.
55.
Bertolotti
,
F. P.
,
Herbert
,
T.
, and
Spalart
,
P. R.
, 1992, “
Linear and Nonlinear Stability of the Blasius Boundary Layer
,”
J. Fluid Mech.
,
242
, pp.
441
474
.
56.
Schlatter
,
P.
,
Örlü
,
R.
,
Li
,
Q.
,
Brethouwer
,
G.
,
Fransson
,
J. H. M.
,
Johansson
,
A. V.
,
Alfredsson
,
P. H.
, and
Henningson
,
D. S.
, 2009, “
Turbulent Boundary Layers up to Reθ = 2500 studied through Simulation and Experiment
,”
Phys. Fluids
,
21
, pp.
051702
-1–051702-
4
.
57.
Ovchinnikov
,
V.
,
Choudhari
,
M. M.
, and
Piomelli
,
U.
, 2008, “
Numerical Simulations of Boundary-Layer Bypass Transition Due to High-Amplitude Free-Stream Turbulence.
,”
J. Fluid Mech.
,
613
, pp.
135
169
.
58.
Westin
,
K. J. A.
,
Boiko
,
A. V.
,
Klingmann
,
B. G. B.
,
Kozlov
,
V. V.
, and
Alfredsson
,
P. H.
, 1994, “
Experiments in a Boundary-Layer Subjected to Free-Stream Turbulence: Part 1. Boundary-Layer Structure and Receptivity
,”
J. Fluid Mech.
,
281
, pp.
193
218
.
59.
Sharma
,
O. P.
,
Wells
,
R. A.
,
Schlinker
,
R. H.
, and
Bailey
,
D. A
., 1982, “
Boundary Layer Development on Turbine Airfoil Suction Surfaces
,”
ASME J. Eng. Power
,
104
, pp.
698
706
.
60.
Rotta
,
J. C.
, 1962, “
Turbulent Boundary Layers in Incompressible Flow
,”
Prog. Aeronaut. Sci.
,
2
,
Pergamon, Oxford
, pp.
1
219
.
61.
Schlichting
,
H.
, and
Gersten
,
K.
, 2000,
Boundary Layer Theory
,8th Revised and Enlarged Edition,
Springer
,
Berlin
.
62.
Hinze
,
J. O.
, 1975,
Turbulence
, 2nd ed.,
McGraw-Hill
,
New York
.
63.
Wallace
,
J. M.
, and
Foss
,
J.
, 1995, “
The Measurement of Vorticity in Turbulent Flows
,”
Ann. Rev. Fluid Mech.
,
27
, pp.
469
514
.
64.
Elsner
,
J. W.
, and
Elsner
,
W.
, 1996, “
On the Measurement of Turbulence Energy Dissipation
,”
Meas. Sci. Technol.
,
7(10)
, pp.
1334
1348
.
65.
Schlatter
,
P.
, and
Örlü
,
R.
, 2010, “
Assessment of Direct Numerical Simulation Data of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
659
, pp.
116
126
.
66.
Zaki
,
T. A.
, and
Durbin
,
P. A.
, 2005, “
Mode Interaction and the Bypass Route to Transition
,”
J. Fluid Mech.
,
531
, pp.
85
111
.
67.
Zaki
,
T. A.
, and
Saha
,
S.
, 2010, “
On Shear Sheltering and the Structure of Vortical Modes in Single- and Two-fluid Boundary Layers
,”
J. Fluid Mech.
,
626
, pp.
111
147
.
68.
Lardeau
,
S.
,
Leschziner
,
M. A.
, and
Li
,
N.
, 2004, “
Modelling Bypass Transition with Low-Reynolds-number Nonlinear Eddy-Viscosity Closure
,”
Flow, Turbul. Combust.
73
, pp.
49
76
.
69.
Rehill
,
B.
,
Walsh
,
E. J.
,
Nolan
,
K.
,
McEligot
,
D. M.
,
Brandt
,
L.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
, 2010, “
Entropy Generation Rate in Turbulent Spots in a Boundary Layer subject to Freestream Turbulence
,”
Seventh IUTAM Symposium on Laminar-Turbulent Transition
,
P.
Schlatter
and
D. S.
Henningson
, eds.,
Springer
,
Dordrecht
, pp.
557
560
.
70.
Jovanovic
,
J.
, 2009,
Personal communication
.
71.
Mayle
,
R. E.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
, 2008, “
Reynolds Stress Calculations for Pre-transition Boundary Layers with Turbulent Free Streams
,” ASME Paper GT2008-50109.
72.
Spalart
,
P. R.
, 1988, “
Direct Simulation of a Turbulent Boundary Layer up to Reθ = 1410
,”
J. Fluid Mech.
,
187
, pp.
61
98
.
73.
Vukoslavcevic
,
P. V.
,
Beratlis
,
N.
,
Balaras
,
E.
,
Wallace
,
J. M.
, and
Sun
,
O.
, 2008, “
On the Spatial Resolution of Velocity and Velocity Gradient-based Turbulence Statistics Measured with Multi-Sensor Hot-Wire Probes
,”
Exp. Fluids
,
46
, pp.
109
119
.
You do not currently have access to this content.