In this study, we are interested in the hydrodynamics of impinging plane jets. Plane jets are widely used in ambience separation in HVAC, fire safety, food process engineering, cooling of electronic components etc. Despite their important industrial applications, plane jets have not been studied as extensively as axisymmetric jets. Plane jets exhibit different kind of instabilities stemming from either streamlines with strong curvature in the impingement region or inflection points in the transverse profile of the streamwise component velocity in the lateral mixing layers. Previous works in the GEPEA laboratory were performed on these flows. These works and the majority of the studies reported in the literature deal with turbulent air jets in various configurations. Very little studies have been done on water impinging jets. Taking into account the fact that the viscosity of water is smaller than air, at the same Reynolds number, it is easier to detect phenomena such as vortices. Phenomena can be observed at lower velocities making it possible to record signals with standard frequency bandwidths. This makes it easier also to do a Lagrangian tracking of vortices. We specially focused our study on the impinging zone of the jet. The dynamics of the impinging zone has not formed the subject of numerous studies. There were no studies that characterize the vortices at the impinging region of water jets in terms of size, centre position, vortex intensity, convection velocities, eccentricity, statistical distribution and turbulent length and time scales. Consequently, a confined water plane jet impinging a flat plate was studied using standard and high speed PIV (Particle Image Velocimetry). We used POD decomposition for filtering PIV data. Then, we applied the λ2 criterion to the recorded velocity fields to detect and characterize the vortices at the impingement. A statistical analysis was then performed. Turbulent length scales, time scales and convection velocities of eddies occurring at the impingement were determined using two point space time correlations. The obtained results were correlated to the dynamics and geometric properties of the jet. A wide range of Reynolds numbers is considered: 3000, 6000, 11000 and 16000. The corresponding results are presented in this paper.

References

1.
Gupta
,
S.
, and
Pavageau
,
M.
, 2007, “
Cellular Confinement of Tunnel Sections Between Two Air Curtains
,”
Building Environ.
,
42
(
9
), pp.
3352
3365
.
2.
Beltaos
,
S.
, and
Rajaratnam
,
N.
, 1973, “
Plane Turbulent Impinging Jets
,”
Int. J. Hydraul. Res.
,
1
, pp.
29
60
.
3.
Gutmark
,
E.
,
Wolfshtein
,
M.
, and
Wygnanski
,
I.
, 1978, “
The Plane Turbulent Impinging Jet
,”
J. Fluid Mech.
,
88
(
4
), pp.
737
756
.
4.
Namer
,
I.
, and
Ötügen
,
M. V.
, 1988, “
Velocity Measurements in Plane Turbulent Air Jet at Moderate Numbers
,”
Exp. Fluids
,
6
, pp.
387
399
.
5.
Maurel
,
S.
, 2001, “
Etude expérimentale d’un jet plan en impact. Analyse paramétrique et caractérisation des transferts de masse
,”
Ph.D. thesis
,
University of Nantes
,
France
.
6.
Beaubert
,
F.
, 2002, “
Simulation des grandes échelles turbulentes d’un jet en impact
,”
Ph.D. thesis
,
University of Nantes
,
France
.
7.
Gupta
,
S.
, 2005, “
Etude expérimentale du comportement dynamique et des performances de rideaux d’air en vue de la conception de systèmes de confinement cellulaire
,”
Ph.D. thesis
,
University of Nantes
,
France
.
8.
Abide
,
S.
, 2005, “
Une méthode de décomposition de domaine pour la simulation numérique directe Contribution à l’étude de jets plans en impacts
,”
Ph.D. thesis
,
University of Nantes
,
France
.
9.
Pavageau
,
M.
, and
Loubière
,
K.
, 2006, “
Automatic Eduction and Statistical Analysis of Coherent Structures in the Wall Region of a Confined Plane Turbulent Impinging Jet
,”
Exp. Fluids
,
41
(
1
), pp.
35
55
.
10.
Beaubert
,
F.
, and
Viazzo
,
S.
, 2001, “
Etude d’un jet plan turbulent en impact proche par simulation des grandes échelles
,”
Proc. SFT: Transferts de chaleur et de masse dans les jets
,
Paris, France.
11.
Gardon
,
R.
, and
Akfirat
,
J. C.
, 1965, “
The Role of Turbulence in Determining the Heat Transfer Characteristics of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
12
, pp.
1261
1272
.
12.
Suetra
,
S. P.
,
Maeder
,
P. F.
, and
Kestin
,
J.
, 1963, “
On the Sensitivity of Heat Transfer in the Stagnation-Point Boundary Layer to Free-Stream Vorticity
,”
J. Fluid Mech.
,
16
, pp.
497
520
.
13.
Suetra
,
S.P.
, 1965, “
Vorticity Amplification in Stagnation-Point Flow and its Effect on Heat Transfer
,”
J. Fluid Mech.
,
21
(
3
), pp.
513
534
.
14.
Yokobori
,
S.
,
Kasagi
,
N.
, and
Hirata
,
M.
, 1983, “
Transport Phenomena at the Stagnation Region of a Two-Dimensional Impinging Jet
,”
Trans. JSME Ser. B
,
49
(
441
), pp.
1029
1039
.
15.
Sakakibara
,
J.
,
Hishida
,
K.
, and
Philips
W. R.
, 2001, “
On the Vertical Structure in a Plane Impinging Jet
,”
J. Fluid Mech.
,
34
, pp.
273
300
.
16.
Tsubokura
,
M.
,
Kobayashi
,
T.
,
Taniguchi
,
N.
, and
Jones
,
W. P.
, 2003, “
A Numerical Study on the Eddy Structures of Impinging Jets Excited at the Inlet
,”
Int. J. Heat Fluid Flow
,
24
, pp.
500
511
.
17.
Loubière
,
K.
, and
Pavageau
,
M.
, 2008, “
Educing Coherent Eddy Structures in Air Curtains Systems
,”
Chem. Eng. Proc.
,
47
, pp.
435
448
.
18.
Jeong
,
J.
, and
Hussain
,
F.
, 1995, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.
19.
Tailland
,
A.
, and
Mathieu
,
J.
, 1967, “
Jet Pariétal
,”
J. Mécanique
,
6
, pp.
103
131
.
20.
Namer
,
I.
, and
Ötügen
,
M. V.
, 1988, “
Velocity Measurements in Plane Turbulent Air Jet at Moderate Numbers
,”
Exp. Fluids
,
6
, pp.
387
399
.
21.
Hussain
,
A. K. M. F.
, and
Clark
,
A. R.
, 1977, “
Upstream Influence on the Near Field of a Plane Turbulent Jet
,”
Phys. Fluids
,
20
(
9
), pp.
1416
1426
.
22.
Koched
,
A.
,
Pavageau
,
M.
, and
Aloui
,
F.
, 2010, “
Vortex Struture in the Wall Region of an Impinging Plane Jet
,”
Proceedings for 2nd International Conference on Energy Conversion and Conservation
, CICME10, April, 22–25.
Hammamet, Tunisia
23.
Maurel
,
S.
, and
Solliec
,
C.
, 2001, “
A Turbulent Plane Jet Impinging Nearby and Far from a Flat Plate
,”
Exp. Fluids
,
31
, pp.
687
696
.
24.
Maurel
,
S.
,
Rey
,
C.
,
Solliec
,
C.
, and
Pavageau
,
M.
, 2004, “
Caractéristiques cinématiques et structurelles d’un jet d’air plan turbulent frappant une plaque plane placée à distance variable
,”
Méc. Ind.
,
5
, pp.
317
329
.
25.
Sakakibara
,
J.
,
Hishida
,
K.
, and
Maeda
,
M.
, 1997, “
Vortex Structure And Heat Transfer in Stagnation Region of an Impinging Plat Jet (Simultaneous Measurements of Velocity and Temperature Fields by Digital Particle Image Velocimetry and Laser-Induced Fluorescence)
,”
Int. J. Heat Mass Transfer
,
40
(
13
), pp.
3163
3176
.
26.
Lumley
,
J. L.
, 1967, “
The Structure of Inhomogeneous Turbulent Flows
,” in
Atmospheric Turbulence and Ratio Wave Propagation
, edited by
A. M.
Ialglom
and
V. I.
Tatarski
, Moscow: Nauka, pp.
221
227
.
27.
Rehimi
,
F.
, and
Aloui
F.
, 2011, “
Synchronized Analysis of an Unsteady Laminar Flow Downstream of a Circular Cylinder Centred Between Two Parallel Walls Using Piv and Mass Transfer Probes
,”
Exp. Fluids
.
28.
Rambaud
,
P.
,
Régert
,
T.
, and
Riethmuller
,
M. L.
, 2006, “
Décomposition Orthogonale et interprétation directe des modes propres
,”
Proc. Congrès Francophone de Techniques Laser CFTL06
,
Toulouse
, 19–22 September.
29.
Sakakibara
,
J.
,
Hishida
,
K.
, and
Philips
W. R.
, 2000, “
On The Vortical Structure in a Plane Impinging Jet
,”
J. Fluid Mech.
,
434
, pp.
273
300
.
30.
Schram
,
C.
,
Rambaud
,
P.
, and
Riethmuller
,
M. L.
, 2004, “
Wavelet Based Eddy Structure Eduction from Backward Facing Step Flow Investigated Using Piv
,”
Exp. Fluids
,
36
, pp.
233
245
.
31.
Scarano
,
F.
, and
Riethmuller
,
M. L.
, 2000, “
Advances in Iterative Multigrid Piv Image Processing
,”
Exp. Fluids
,
29
, pp.
51
60
.
32.
Kerhervé
,
F.
, and
Fitzpatrick
,
J.
2011, “
Measurement and Analysis of the Turbulent Length Scales in Jet Flows
,”
Exp. Fluids
,
50
, pp.
637
651
.
33.
Fisher
,
M. J.
, and
Davies
,
P. O. A. L.
, 1964, “
Correlation Measurements in a Non-Frozen Pattern of Turbulence
,”
J. Fluid Mech.
,
18
, pp.
313
356
.
You do not currently have access to this content.