Scalar, eddy viscosity models are widely used for predicting engineering turbulent flows. System rotation, or streamline curvature, can enhance or reduce the intensity of turbulence. Methods to incorporate the effects of rotation and streamline curvature consist of introducing parametric variation of model coefficients, such that either the growth rate of turbulent energy is altered; or such that the equilibrium solution bifurcates from healthy to decaying solution branches. For general use, parameters must be developed in coordinate invariant forms. Effects of rotation and of curvature can be unified by introducing the convective derivative of the rate of strain eigenvectors as their measure.
Issue Section:
Fundamental Issues and Canonical Flows
References
1.
Rodi
, W.
, and Scheurer
, G.
, 1983, “Calculation of Curved Shear Layers With Two-Equation Turbulence Models,”
Phys. Fluids
, 26
, pp. 1422
–1436
.2.
Launder
, B. E.
, Priddin
, C. H.
, and Sharma
, B. I.
, 1977, “The Calculation of Turbulent Boundary Layers on Spinning and Curved Surfaces,”
ASME Trans. J. Fluids Eng.
, 99
, p. 231
.3.
Durbin
, P.
, and Pettersson Reif
, B.
, 2010, Statistical Theory and Modeling for Turbulent Flows
, 2nd ed., John Wiley and Sons
, New York
.4.
Brethouwer
, G.
, 2005, “The Effect of Rotation on Rapidly Sheared Homogeneous Turbulence and Passive Scalar Transport: Linear Theory and Direct Numerical Simulation,”
J. Fluid Mech.
, 542
, pp. 305
–342
.5.
Kristoffersen
, R.
, and Andersson
, H. I.
, 1993, “Direct Simulations of Low-Reynolds-Number Turbulent Flow in a Rotating Channel,”
J. Fluid Mech.
, 256
, pp. 163
–197
.6.
Lamballais
, E.
, Metais
, O.
, and Lesieur
, M.
, 1998, “Spectral-Dynamic Model for Large-Eddy Simulations of Turbulent Rotating Channel Flow,”
Theor. Comput. Fluid Dyn.
, 12
, pp. 149
–177
.7.
Grundestam
, O.
, Wallin
, S.
, and Johansson
, A. V.
, 2008, “Direct Numerical Simulations of Rotating Turbulent Channel Flow,”
J. Fluid Mech.
, 598
, pp. 177
–199
.8.
Iacovides
, H.
, Launder
, B. E.
, and Li
, H. Y.
, 1996, “The Computation of Flow Development Through Stationary and Rotating U-Ducts of Strong Curvature,”
Int. J. Heat Fluid Flow
, 17
, pp. 22
–33
.9.
Witt
, H. T.
, and Joubert
, P. N.
, 1985, “Effect of Rotation on a Turbulent Wake,”
Turbulent Shear Flows V
, Springer-Verlag
, Berlin
, pp. 21
–25
.10.
Johnston
, J. P.
, 1998, “Effects of System Rotation on Turbulence Structure: A Review Relevant to Turbomachinery Flows,”
Int. J. Rotating Mach.
, 4
, pp. 97
–112
.11.
Barri
, M.
, Khoury
, G. K. E.
, Andersson
, H. I.
, and Pettersen
, B.
, 2009, “Massive Separation in Totating Turbulent Flows,”
Advances in Turbulence XII
, B.
Eckhardt
, ed., Vol. 132
, Springer
, Berlin
, pp. 625
–628
.12.
Laskowski
, G. M.
, and Durbin
, P. A.
, 2007, “Direct Numerical Simulations of Turbulent Flow Through a Stationary and Rotating Infinite Serpentine Passage,”
Phys. Fluids
, 19
, pp. 1
–14
.13.
Andersson
, H. I.
, 2010, “Effect of System Rotation on Free Shear Flows,”
Effect of System on Turbulence With Application to Turbomachinery
, Von Karman Institute, Belgium, LS
2010–08.14.
Speziale
, C. G.
, and MacGiollaMhuiris
, N.
, 1989, “On the Prediction of Equilibrium States in Homogeneous Turbulence,”
J. Fluid Mech.
, 209
, pp. 591
–615
.15.
Piomelli
, U.
, 1999, “Large-Eddy Simulation: Achievements and Challenges,”
Prog. Aerosp. Sci.
, 35
, pp. 335
–362
.16.
Gatski
, T. B.
, and Jongen
, T.
, 2000, “Nonlinear Eddy Viscosity and Algebraic Stress Models for Solving Complex Turbulent Flows,”
Prog. Aerosp. Sci.
, 36
, pp. 655
–682
.17.
Speziale
, C. G.
, Sarkar
, S.
, and Gatski
, T. B.
, 1991, “Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach,”
J. Fluid Mech.
, 227
, pp. 245
–272
.18.
Bradshaw
, P.
, 1973, “Effects of Streamline curvature on Turbulent Flow,”
AGARDograph
, 169
.19.
Hellsten
, A.
, 1998, “Some Improvements in Menter’s k-ω SST Turbulence Model,”
AIAA Paper No. 98-2554.20.
Cazalbou
, J.
, Chassaing
, P.
, Dufour
, G.
, and Carbonneau
, X.
, 2005, “Two-Equation Modeling of Turbulent Rotating Flows,”
Phys. Fluids
, 17
, pp. 1
–14
.21.
Howard
, J.
Patankar
, S.
and Bordynuik
, R.
, 1980. “Flow Prediction in Rotating Ducts Using Coriolis-Modified Turbulence Models,”
J. Fluids Eng.
, 102
, pp. 456
–461
.22.
Pettersson-Reif
, B. A.
, Durbin
, P. A.
, and Ooi
, A.
, 1999. “Modeling Rotational Effects in Eddy-Viscosity Closures,”
Int. J. Heat Fluid Flow
, 20
, pp. 563
–573
.23.
Park
, J. Y.
, and Chung
, M. K.
, 1999, “A Model for the Decay of Rotating Homogeneous Turbulence,”
Phys. Fluids
, 11
, pp. 1544
–1549
.24.
Thiele
, M.
, and Müller
, W.-C.
, 2009, “Structure and Decay of Rotating Homogeneous Turbulence,”
J. Fluid Mech.
, 637
, pp. 425
–442
.25.
Spalart
, P. R.
, and Shur
, M. L.
, 1997, “On the Sensitization of Turbulence Models to Rotation and Curvature,”
Aerosp. Sci. Technol.
, 1
, pp. 297
–302
.26.
Shur
, M. L.
, Strelets
, M. K.
, Travin
, A. K.
, and Spalart
, P. R.
, 2000, “Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction,”
AIAA J.
, 38
, pp. 784
–792
.27.
Khodak
, A.
, and Hirsch
, C.
, 1996, “Second Order Nonlinear Models With Explicit Effect of Curvature and Rotation,”
Proceedings of the Third ECCO- MAS Computational Fluid Dynamics Conference
.28.
Dhakal
, T. P.
, and Walters
, K. D.
, 2011, “A Three-Equation Variant of the k-ω Model Sensitized to Rotation and Curvature Effects,”
J. Fluids Eng.
, submitted.29.
Duraisamy
, K.
, and Iaccarino
, G.
, 2005, “Curvature Correction and Application of the v2-f Turbulence Model to Tip Vortex Flows,”
Annual Research Briefs
, Center for Turbulence Research, Stanford University
.30.
Durbin
, P.
, and Pettersson Reif
, B.
, 1999, “On Algebraic Second Moment Models,”
Flow, Turbul. Combust.
, 63
, pp. 23
–37
.31.
Girimaji
, S.
, 1997, “A Galilean Invariant Explicit Algebraic Reynolds Stress Model for Turbulent Curved Flows,”
Phys. Fluids
, 9
, pp. 1067
–1077
.32.
Hellsten
, A.
, 2002, “Curvature Corrections for Algebraic Reynolds Stress Modeling: A Discussion,”
AIAA J.
, 40
, pp. 1090
–1911
.33.
Wallin
, S.
, and Johansson
, A.
, 2002, “Modelling Streamline Curvature Effects in Explicit Algebraic Reynolds Stress Turbulence Models,”
Int. J. Heat Fluid Flow
, 23
, pp. 721
–730
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.