The separation and reattachment of suction surface boundary layer in a low pressure turbine is characterized using large-eddy simulation at Ress = 69000 based on inlet velocity and suction surface length. Favorable comparisons are drawn with experiments using a high pass filtered Smagorinsky model for sub-grid scales. The onset of time mean separation is at s/so = 0.61 and reattachment at s/so = 0.81, extending over 20% of the suction surface. The boundary layer is convectively unstable with a maximum reverse flow velocity of about 13% of freestream. The breakdown to turbulence occurs over a very short distance of suction surface and is followed by reattachment. Turbulence near the bubble is further characterized using anisotropy invariant mapping and time orthogonal decomposition diagnostics. Particularly the vortex shedding and shear layer flapping phenomena are addressed. On the suction side, dominant hairpin structures near the transitional and turbulent flow regime are observed. The hairpin vortices are carried by the freestream even downstream of the trailing edge of the blade with a possibility of reaching the next stage. Longitudinal streaks that evolve from the breakdown of hairpin vortices formed near the leading edge are observed on the pressure surface.

References

1.
Alam
,
M.
, and
Sandham
,
N. D.
, 2000, “
Direct Numerical Simulation of ‘Short’ Laminar Separation Bubbles with Turbulent Reattachment
,”
J. Fluid Mech.
,
410
(
4
), pp.
1
28
.
2.
Yang
,
Z.
, and
Voke
,
P. R.
, 2001, “
Large-Eddy Simulation of Boundary-Layer Separation and Transition at a Change of Surface Curvature
,”
J. Fluid. Mech.
,
439
(
1
), pp.
305
333
.
3.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
, 2010, “
Transition Mechanisms in Separation Bubbles Under Low- and Elevated-Freestream Turbulence
,”
ASME J. Turbomach.
,
132
(
1
), p.
011004
.
4.
Kalitzin
,
G.
,
Wu
,
X. H.
, and
Durbin
,
P. A.
, 2003, “
DNS of Fully Turbulent Flow in a LPT Passage
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
636
644
.
5.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2006, “
Large-Eddy Simulation of Transition in a Separation Bubble
,”
ASME Trans. J. Fluids Eng.
,
128
(
2
), pp.
232
238
.
6.
Wissink
,
J.
, and
Rodi
,
W.
, 2006, “
LES of Background Fluctuations Interacting with Periodically Incoming Wakes in a Turbine Cascade
,”
Direct and Large-Eddy Simulation VI,
E.
Lamballais
,
R.
Friedrich
,
B.
Geurts
, and
O.
Mtais
, eds.,
Springer
,
Netherlands
, pp.
609
616
.
7.
Michelassi
,
V.
,
Wissink
,
J. G.
,
Frohlich
,
J.
, and
Rodi
,
W.
, 2003, “
Large-Eddy Simulation of Flow Around Low-Pressure Turbine Blade with Incoming Wakes
,”
AIAA J.
,
41
(
11
), pp.
2143
2156
.
8.
Schobeiri
,
M. T.
,
Ozturk
,
B.
,
Kegalj
,
M.
, and
Bensing
,
D.
, 2008, “
On the Physics of Heat Transfer and Aerodynamic Behavior of Separated Flow Along a Highly Loaded Low Pressure Turbine Blade Under Periodic Unsteady Wake Flow and Varying of Turbulence Intensity
ASME J. Heat Transfer.
,
130
(
5
), p.
051703
.
9.
Gaster
,
M.
, 1966, “
The Structure and Behaviour of Laminar Separation Bubbles
,”
AGARD Conf. Proc.
,
4
, pp.
813
854
.
10.
Horton
,
H.
,
A Semi-Empirical Theory for the Growth and Bursting of Laminar Separation Bubbles
(
HM Stationery Off
, 1969),
London
.
11.
Volino
,
R.
, 2002, “
Separated Flow Transition Under Simulated Low-Pressure Turbine Airfoil Conditions-Part 1: Mean Flow and Turbulence Statistics
,”
ASME J. Turbomach.
,
124
(
4
), pp.
645
655
.
12.
Hodson
,
H.
, and
Howell
,
R.
, 2005, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
, pp.
71
98
.
13.
Sarkar
,
S.
, 2008, “
Identification of Flow Structures on a LP Turbine Blade due to Periodic Passing Wakes
,”
Trans. ASME J. Fluids Eng.
,
130
, p.
061103
.
14.
Öztürk
,
B.
, and
Schobeiri
,
M.
, 2007, “
Effect of Turbulence Intensity and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Reattachment Along the Suction Surface of a Low-Pressure Turbine Blade
,”
Trans. ASME J. Fluids Eng.
,
129
, pp.
747
763
.
15.
Hodson
,
H.
, and
Addison
,
J.
, 1989, “
Wake-Boundary Layer Interactions in an Axial Flow Turbine Rotor at Off-Design Conditions
,”
ASME J. Turbomach.
,
111
, pp.
181
192
.
16.
Wissink
,
J.
, 2003, “
DNS of Separating, Low Reynolds Number Flow in a Turbine Cascade with Incoming Wakes
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
626
635
.
17.
Wu
,
X.
, and
Durbin
,
P.
, 2001, “
Evidence of Longitudinal Vortices Evolved From Distorted Wakes in a Turbine Passage
,”
J. Fluid Mech.
,
446
(
1
), pp.
199
228
.
18.
Wu
,
X.
, and
Durbin
,
P. A.
, 2000, “
Boundary Layer Transition Induced by Periodic Wakes
,”
ASME J. Turbomach.
,
122
(
3
), pp.
442
449
.
19.
Wilson
,
P. G.
, and
Pauley
,
L. L.
, 1998, “
Two- and Three-Dimensional Large-Eddy Simulations of a Transitional Separation Bubble
,”
Phys. Fluids
,
10
(
11
), pp.
2932
2940
.
20.
Fischer
,
P. F.
,
Lottes
,
J. W.
, and
Kerkemeier
,
S. G.
, 2008, “
nek5000
,” http://nek5000.mcs.anl.govhttp://nek5000.mcs.anl.gov.
21.
Berselli
,
L. C.
,
Iliescu
,
W.
,
and
Layton
,
W. J.
,
Mathematics of Large Eddy Simulation of Turbulent Flows
(
Springer
,
New York
, 2005).
22.
Fischer
,
P.
,
Kruse
,
G.
, and
Loth
,
F.
, 2002, “
Spectral Element Methods for Transitional Flows in Complex Geometries
,”
J. Sci. Comput.
,
17
(
1
), pp.
81
98
.
23.
Meneveau
,
C.
, and
Katz
,
J.
, 2000, “
Scale-Invariance and Turbulence Models for Large-Eddy Simulation
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
1
32
.
24.
Stolz
,
S.
, 2005, “
High-Pass Filtered Eddy-Viscosity Models for Large-Eddy Simulations of Compressible Wall-Bounded Flows
,”
Trans. ASME J. Fluids Eng.
,
127
(
4
), pp.
666
673
.
25.
Stolz
,
S.
, and
Adams
,
N. A.
, 2003, “
Large-Eddy Simulation of High-Reynolds-Number Supersonic Boundary Layers Using the Approximate Deconvolution Model and a Rescaling and Recycling Technique
,”
Phys. Fluids
,
15
(
8
), pp.
2398
2412
.
26.
Walsh
,
O.
, 1992, “
Eddy Solutions of the Navier-Stokes Equations
,”
The Navier-Stokes Equations II-Theory and Numerical Methods
,
Springer Berlin/Heidelberg
,
1530
, pp.
306
309
.
27.
Fischer
,
P.
, and
Mullen
,
J.
, 2001, “
Filter-Based Stabilization of Spectral Element Methods
,”
Comptes Rendus de l’Academie des Sciences-Serie I-Mathematique
,
332
(
3
), pp.
265
270
.
28.
Lumley
,
J.
, and
Newman
,
G.
, 1977, “
The Return to Isotropy of Homogeneous Turbulence
,”
J. Fluid Mech.
,
82
(
01
), pp.
161
178
.
29.
Jovičcić
,
N.
,
Breuer
,
M.
, and
Jovanović
,
J.
, 2006, “
Anisotropy-Invariant Mapping of Turbulence in a Flow Past an Unswept Airfoil at High Angle of Attack
,”
Trans. ASME J. Fluids Eng.
,
128
, pp.
559
567
.
30.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
,
Turbulence, Coherent Structures, Dynamical Systems, and Symmetry
(
Cambridge University Press
,
Cambridge, UK
, 1996).
31.
Lumley
,
J. L.
,
The Structure of Inhomogeneous Turbulent Flows
(
Nauka
,
Moscow
, 1967).
32.
Ball
,
K. S.
,
Sirovich
,
L.
, and
Keefe
,
L. R.
, 1991, “
Dynamical Eigenfunction Decomposition of Turbulent Channel Flow
,”
Int. J. Numer. Methods Fluids
,
12
, pp.
587
604
.
33.
Sirovich
,
L.
,
Ball
,
K. S.
, and
Keefe
,
L. R.
, 1990, “
Plane Waves and Structures in Turbulent Channel Flow
,”
Phys. Fluids A
,
12
, pp.
2217
2226
.
34.
Sirovich
,
L.
,
Ball
,
K. S.
, and
Handler
,
R. A.
, 1991, “
Propagating Structures in Wall-Bounded Turbulent Flows
,”
Theor. Comput. Fluid Dyn.
,
2
, pp.
307
317
.
35.
Webber
,
G. A.
,
Handler
,
R. A.
, and
Sirovich
,
L.
, 2002, “
Energy Dynamics in a Turbulent Channel Flow Using the Karhunen-Loève Approach
,”
Int. J. Numer. Methods Fluids
,
40
, pp.
1381
1400
.
36.
Duggleby
,
A.
,
Ball
,
K. S.
,
Paul
,
M. R.
, and
Fischer
,
P. F.
, 2007, “
Dynamical Eigenfunction Decomposition of Turbulent Pipe Flow
,”
J. Turbulence
,
8
(
43
), pp.
1
24
.
37.
Duggleby
,
A.
,
Ball
,
K. S.
, and
Paul
,
M. R.
, 2007, “
The Effect of Spanwise Wall Oscillation on Turbulent Pipe Flow Structures Resulting in Drag Reduction
,”
Phys. Fluids
,
19
(
125107
), p.
125107
.
38.
Aubry
,
N.
,
Guyonnet
,
R.
, and
Lima
,
R.
, 1991, “
Spatiotemporal Analysis of Complex Signals: Theory and Applications
,”
J. Stat. Phys.
,
64
, pp.
683
739
.
39.
Duggleby
,
A.
,
Ball
,
K.
, and
Schwaenen
,
M.
, 2009, “
Structure and Dynamics of Low Reynolds Number Turbulent Pipe Flow
,”
Philos. Trans. R. Soc. London, Ser. A
,
367
(
1888
), pp.
473
488
.
40.
Jeong
,
J.
, and
Hussain
,
F.
, 1995, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.
41.
Horton
,
H. P.
, 1968, “
Laminar Separation in Two and Three Dimensional Incompressible Flow
,” Ph.D. thesis, University of London, London.
42.
Welch
,
P.
, 1967, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging OverShort, Modified Periodograms
,”
Audio and Electroacoustics
,
15
(
2
), pp.
70
73
.
You do not currently have access to this content.