Almost all computational fluid dynamics (CFD) simulations of flow around marine propellers use turbulence models that are only well suited for fully turbulent flows, which in some cases may lead to accuracy degradation in the prediction of propeller performance characteristics. The discrepancy between computed thrust and torque and corresponding experimental data increases with increasing propeller load. This is due in part to the fact that a large laminar flow region is found to exist and turbulence transition takes place on propeller blades of model scale and/or under high-load conditions. In these cases, it may be necessary to consider boundary-layer transition to obtain accurate results from CFD simulations. The objective of this work is to perform simulations of a marine propeller using a transition-sensitive turbulence model to better resolve the propeller flow characteristics. Fully turbulent flow simulations are also performed for comparison purposes at various propeller load conditions. Computational results are analyzed and compared with water-tunnel and open-water experimental data. It is found that the applied transition-sensitive turbulence model is better able to resolve blade-surface stresses, flow separations, and tip-vortex originations, and, consequently, improve the prediction accuracy in propeller performance, especially under high-load conditions. Furthermore, solutions obtained using the transition-sensitive turbulence model show tip-vortex flows of higher strength, whereas results by the standard k-ω SST turbulence model indicate excessive dissipation of the vortex core.

References

1.
Chesnakas
,
C. J.
, and
Jessup
,
S. D.
, 1989, “
Cavitation and 3-D LDV Tip-Flowfield Measurements of Propeller 5168
,” CRDKNSWD/HD-1460-02, Carderock Division, Naval Surface Warfare Center.
2.
Paterson
,
E. G.
,
Wilson
,
R. V.
, and
Stern
F.
, 2003, “
General-Purpose Parallel Unsteady RANS Ship Hydrodynamics Code: CFDSHIP-IOWA IIHR
,” Technical Report No. 432.
3.
Rhee
,
S. H.
, and
Joshi
,
S.
, 2005, “
Computational Validation for Flow around a Marine Propeller Using Unstructured Mesh Based Navier-Stokes Solver
,”
JSME Int. J., Ser. B
,
48
(
3
), pp.
562
570
.
4.
Hsiao
,
C.
, and
Chahine
,
G. L.
, 2008, “
Scaling of Tip Vortex Cavitation Inception for a Marine Open Propeller
,”
27th Symposium on Naval Hydrodynamics
, Seoul, Korea.
5.
Hsiao
,
C.
, and
Pauley
,
L. L.
, 1999, “
Numerical Computation of Tip Vortex Flow Generated by a Marine Propeller
,”
ASME J. Fluids Eng.
,
212
, pp.
638
645
.
6.
Oh
,
K.-J.
, and
Kang
,
S.-H.
, 1995, “
Numerical Calculation of the Viscous Flow around a Propeller Shaft Configuration
,”
Int. J. Numer. Methods Fluids
,
21
(
1
), pp.
1
13
.
7.
Stanier
,
M.
, 1998, “
The Application of RANS Code to Investigate Propeller Scale Effects
,”
Proceeding of the 22nd Symposium on Naval Hydrodynamics
, Washington, D.C., pp.
222
233
.
8.
Chen
,
B.
, and
Stern
,
F.
, 1999, “
Computational Fluid Dynamics of Four-Quadrant Marine-Propulsor Flow
,”
J. Ship Res.
,
43
(
4
), pp.
218
228
.
9.
Funeno
,
I.
, 2002, “
On Viscous Flow around Marine Propellers-Hub Vortex and Scale Effect
,”
J. Kansai Soc. Nav. Archit.
,
2002
(
238
), pp.
17
27
.
10.
Walters
,
D. K.
, and
Cokljat
,
D.
, 2008, “
A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flow
,”
ASME Trans. J. Fluids Eng.
,
130
(
12
), pp.
121401.1
121401.14
.
11.
Luke
,
E.
, 2007, “
On Robust and Accurate Arbitrary Polytope CFD Solvers (Invited)
,”
18th AIAA Computational Fluid Dynamics Conference
, Miami, FL, AIAA 2007-3956.
12.
Luke
,
E.
, and
Cinnella
,
P.
, 2007, “
Numerical Simulations of Mixtures of Fluids Using Upwind Algorithms
,”
Comput. Fluids
,
36
(
10
), pp.
1547
1566
.
13.
Tong
,
X.-L.
, and
Luke
,
E.
, 2004, “
Turbulence Models and Heat Transfer in Nozzle Flows
,”
AIAA J.
,
42
(
11
), pp.
2391
2393
.
14.
Wu
,
J.
,
Tang
,
L.
,
Luke
,
E.
,
Tong
,
X.-L.
, and
Cinnella
,
P.
, 2002, “
Comprehensive Numerical Study of Jet-Flow Impingement over Flat Plates
,”
J. Spacecr. Rockets
,
35
(
1
), pp.
357
366
.
15.
Liu
,
Q.
,
Luke
,
E.
, and
Cinnella
,
P.
, 2005, “
Coupling Heat Transfer and Fluid Flow Solvers for Multi-Disciplinary Simulations
,”
J. Thermophys. Heat Transfer
,
19
(
4
), pp.
417
427
.
16.
Tong
,
X.-L.
, and
Luke
,
E.
, 2005, “
Eulerian Simulations of Icing Collection Efficiency Using a Singularity Diffusion Model
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, AIAA Paper 2005-01246.
17.
Kalitzin
,
G.
,
Wu
,
X.
, and
Durbin
,
P. A.
, 2003, “
DNS of Fully Turbulent Flow in a LPT Passage
,”
Int. J. Heat Fluid Flow
,
24
, pp.
636
644
.
18.
van Driest
,
E. R.
, and
Blumer
,
C. B.
, 1963, “
Boundary Layer Transition, Free Stream Turbulence, and Pressure Gradient Effects
,”
AIAA J.
,
1
(
6
), pp.
1303
1306
.
19.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
, 1980, “
Natural Transition of Boundary Layers-The Effects of Turbulence, Pressure Gradient, and Flow History
,”
J. Mech. Eng. Sci.
,
22
, pp.
213
228
.
20.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
509
537
.
21.
Fasihfar
,
A.
, and
Johnson
,
M. W.
, 1992, “
An Improved Boundary Layer Transition Correlation
,”
ASME Paper No. 92-GT-245
.
22.
Praisner
,
T. J.
, and
Clark
,
J. P.
, 2007, “
Predicting Transition in Turbomachinery-Part I: A Review and New Model Development
,”
ASME J. Turbomach.
,
129
, pp.
1
13
.
23.
Edwards
,
J. R.
,
Roy
,
C. J.
,
Blottner
,
F. G.
, and
Hassan
,
H. G.
, 2001, “
Development of a One-Equation Transition/Turbulence Model
,”
AIAA J.
,
39
, pp.
1691
1698
.
24.
Wang
,
C.
, and
Perot
,
B.
, 2002, “
Prediction of Turbulent Transition in Boundary Layers Using the Turbulent Potential Model
,”
J. Turbul.
,
3
, pp.
22
36
.
25.
Walters
,
D. K.
, and
Leylek
,
J. H.
, 2004, “
A New Model for Boundary Layer Transition Using a Single-Point RANS Approach
,”
ASME J. Turbomach.
,
126
, pp.
193
202
.
26.
Suzen
,
Y. B.
, and
Huang
,
P. G.
, 2000, “
Modeling of Flow Transition Using an Intermittency Transport Equation
,”
ASME Trans. J. Fluids Eng.
,
122
, pp.
273
284
.
27.
Steelant
,
J.
, and
Dick
,
E.
, 2001, “
Modeling of Laminar-Turbulent Transition for High Freestream Turbulence
,”
ASME Trans. J. Fluids Eng.
,
123
, pp.
22
30
.
28.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Volker
,
S.
, 2006, “
A Correlation-Based Transition Model Using Local Variables-Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
, pp.
413
422
.
29.
User Guide Fluent 6.12
,
Ansys Inc.
,
Canonsburg, PA
.
30.
Mayle
,
R. E.
, and
Schulz
,
A.
, 1997, “
The Path to Predicting Bypass Transition
,”
ASME J. Turbomach.
,
119
, pp.
405
411
.
31.
Coupland
,
J.
, 1990, ERCOFTAC Special Interest Group on Laminar to Turbulent Transition and Retransition, T3A and T3B Test Cases.
32.
Luke
,
E. A.
, and
George
,
T.
, 2005, “
Loci: A Rule-Based Framework for Parallel Multidisciplinary Simulation Synthesis
,”
J. Funct. Program.
,
15
(
3
), pp.
477
592
.
33.
Luke
,
E. A.
,
Tong
,
X.-L.
, and
Cinnella
,
P.
, 2006, “
Numerical Simulations of Fluids with a General Equation of State
,”
44th Aerospace Sciences Meeting
, Reno, NV, AIAA 2006-12951.
34.
Menter
,
F. R.
, 1992, “
Improved Two-Equation K-omega Turbulence Models for Aerodynamic Flows
,” Ames Research Center, Moffett Field, NASA Technical Memorandum, 103975.
35.
Gaither
,
J. A.
,
Marcum
,
D. L.
, and
Mitchell
,
B.
, 2000, “
SolidMesh: A Solid Modeling Approach to Unstructured Grid Generation
,”
7th International Conference on Numerical Grid Generation in Computational Field Simulations
, Whistler, BC.
36.
Marcum
,
D. L.
, 2001, “
Efficient Generation of High Quality Unstructured Surface and Volume Grids
,”
Eng. Comput.
,
17
(
3
), pp.
211
233
.
37.
Marcum
,
D. L.
, and
Gaither
,
J. A.
, 1999, “
Mixed Element Type Unstructured Grid Generation for Viscous Flow
,”
14th AIAA Computational Fluid Dynamics Conference
, Norfolk, VA, AIAA Paper 99-3252.
38.
Remotigue
,
M. G.
, 1999, “
Structured Grid Technology to Enable Flow Simulation in an Integrated System Environment
,” Ph.D. dissertation, Mississippi State University, MS.
39.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
40.
Ito
,
M.
, 1987, “
Calculation of Viscous Effects on Propeller Open Characteristics
,”
Trans. West-Japan Soc. Nav. Archit.
,
73
, pp.
83
96
.
41.
Uto
,
S.
, 1992, “
Computation of Incompressible Viscous Flow around a Marine Propeller
,”
Jpn. Soc. Nav. Archit. Ocean Eng.
,
172
, pp.
213
224
.
42.
Uto
,
S.
, 1993, “
Computation of Incompressible Viscous Flow around a Marine Propeller, 2nd Report: Turbulent Flow Simulation
,”
Jpn. Soc. Nav. Archit. Ocean Eng.
,
173
, pp.
67
75
.
43.
Uto
,
S.
, 1994, “
Basic Study on the Scale Effect of the Viscous Flow around a Marine Propeller
,”
J. Kansai Soc. Nav. Archit.
,
222
, pp.
33
39
.
44.
Vlahostergios
,
Z.
,
Yakinthos
,
K.
, and
Goulas
,
A.
, 2009, “
Separation-Induced Boundary Layer Transition: Modeling with a Non-linear Eddy-Viscosity Model Coupled with the Laminar Kinetic Energy Equation
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
617
636
.
You do not currently have access to this content.