A series of numerical simulations for a Francis turbine were carried out to estimate the unsteady motion of the cavity in the draft tube of the turbine under a much larger flow rate condition than the swirl-free flow rate. The evaporation and condensation process was described by using a simplified Rayleigh–Plesset equation. A two-phase homogeneous model was adopted to calculate the mixture of gas and liquid phases. Instantaneous pressure monitored at a point on the draft tube formed long-period pulsations. Detailed analysis of the simulation results clarified the occurrence of a uniquely shaped cavity and the corresponding flow pattern in every period of the pressure pulsations. The existence of a uniquely shaped cavity was verified with an experimental approach. A simulation without rotor-stator interaction also obtained long-period pulsations after an extremely long computational time. This result shows that the rotor-stator interaction does not contribute to the excitation of long-period pulsations.

References

1.
Chen
,
C.
,
Nicolet
,
C.
,
Yonezawa
,
K.
,
Farhat
,
M.
,
Avellan
,
F.
, and
Tsujimoto
,
Y.
,
2008
, “
One-Dimensional Analysis of Full Load Draft Tube Surge
,”
ASME J. Fluids Eng.
,
130
, p.
041106
.10.1115/1.2903475
2.
Sick
,
M.
,
Doerfler
,
P.
,
Sallaberger
,
M.
,
Lohmberg
,
A.
, and
Casey
,
M.
,
2002
, “
CFD Simulation of the Draft Tube Vortex
,”
Proc. 21st IAHR Symp. Hydraulic Machinery & Systems, Lausanne, Switzerland
, Paper No. 32, pp.
1
9
.
3.
Ciocan
,
G. D.
,
Iliescu
,
M. S.
,
Vu
,
T. C.
,
Nennemann
,
B.
, and
Avellan
,
F.
,
2007
, “
Experimental Study and Numerical Simulation of the FLINDT Draft Tube Rotating Vortex
,”
ASME J. Fluids Eng.
,
129
, pp.
146
158
.10.1115/1.2409332
4.
Iliescu
,
M. S.
,
Ciocan
,
G. D.
, and
Avellan
,
F.
,
2008
, “
Analysis of the Cavitating Draft Tube Vortex in a Francis Turbine Using Particle Image Velocimetry Measurements in Two-Phase Flow
,”
ASME J. Fluids Eng.
,
130
, p.
021105
.10.1115/1.2813052
5.
Neto
,
A. D. A.
,
Jester-Zuerker
,
R.
,
Jung
,
A.
, and
Maiwald
,
M.
,
2012
, “
Evaluation of a Francis Turbine Draft Tube Flow at Part Load Using Hybrid RANS-LES Turbulence Modelling
,”
IOP Conf. Ser. Earth Env. Sci.
,
15
, p.
062010
.10.1088/1755-1315/15/6/062010
6.
Kurokawa
,
J.
,
Kajigaya
,
A.
,
Matsui
,
J.
, and
Imamura
,
H.
,
2000
, “
Suppression of Swirl in a Conical Diffuser by Use of J-Groove
,”
Proc. 20th IAHR Symp. Hydraulic Machinery & Systems
, Charlotte, NC.
7.
Susan-Resiga
,
R.
,
Muntean
,
S.
,
Vu
,
T. C.
,
Ciocan
,
G. D.
, and
Nennemann
,
B.
,
2006
, “
Jet Control of the Draft Tube Vortex Rope in Francis Turbines at Partial Discharge
,”
Proc. 23rd IAHR Symp. Hydraulic Machinery & Systems
, Yokohama, Japan, Paper No. F192.
8.
Kurokawa
,
J.
,
Imamura
,
H.
, and
Choi
,
Y. D.
,
2010
, “
Effect of J-Groove on the Suppression of Swirl Flow in a Conical Diffuser
,”
ASME J. Fluids Eng.
,
132
, p.
071101
.10.1115/1.4001899
9.
Tanasa
,
C.
,
Susan-Resiga
,
R.
,
Bosioc
,
A.
, and
Muntean
,
S.
,
2010
, “
Mitigation of Pressure Fluctuations in the Discharge Cone of Hydraulic Turbines Using Flow-Feedback
,”
IOP Conf. Ser. Earth Env. Sci.
,
12
, p.
012067
.10.1088/1755-1315/12/1/012067
10.
Koutnik
,
J.
,
Nicolet
,
C.
,
Schohl
,
G. A.
, and
Avellan
,
F.
,
2006
, “
Overload Surge Event in a Pumped-Storage Power Plant
,”
Proc. 23rd IAHR Symp. Hydraulic Machinery & Systems
, Yokohama, Japan, Paper No. F135.
11.
Alligné
,
S.
,
Maruzewski
,
P.
,
Dinh
,
T.
,
Wang
,
B.
,
Fedorov
,
A.
,
Iosfin
,
J.
, and
Avellan
,
F.
,
2010
, “
Prediction of a Francis Turbine Prototype Full Load Instability From Investigations on the Reduced Scale Model
,”
IOP Conf. Ser. Earth Env. Sci.
,
12
, p.
012025
.10.1088/1755-1315/12/1/012025
12.
Dörfler
,
P. K.
,
Keller
,
M.
, and
Braun
,
O.
,
2010
, “
Francis Full-Load Surge Mechanism Identified by Unsteady 2-Phase CFD
,”
IOP Conf. Ser. Earth Env. Sci.
,
12
, p.
012026
.10.1088/1755-1315/12/1/012026
13.
Chen
,
C.
,
Nicolet
,
C.
,
Yonezawa
,
K.
,
Farhat
,
M.
,
Avellan
,
F.
,
Miyagawa
,
K.
, and
Tsujimoto
,
Y.
,
2010
, “
Experimental Study and Numerical Simulation of Cavity Oscillation in a Diffuser With Swirling Flow
,”
Int. J. Fluid Mach. Syst.
,
3
(
1
), pp.
80
90
.10.5293/IJFMS.2010.3.1.080
14.
Chen
,
C.
,
Nicolet
,
C.
,
Yonezawa
,
K.
,
Farhat
,
M.
,
Avellan
,
F.
,
Miyagawa
,
K.
, and
Tsujimoto
,
Y.
,
2010
, “
Experimental Study and Numerical Simulation of Cavity Oscillation in a Conical Diffuser
,”
Int. J. Fluid Mach. Syst.
,
3
(
1
), pp.
91
101
.10.5293/IJFMS.2010.3.1.091
15.
Yonezawa
,
K.
,
Konishi
,
D.
,
Miyagawa
,
K.
,
Avellan
,
F.
,
Dorfler
,
P.
, and
Tsujimoto
,
Y.
,
2012
, “
Cavitation Surge in a Small Model Test Facility Simulating a Hydraulic Power Plant
,”
Int. J. Fluid Mach. Syst.
,
5
(
4
), pp.
152
160
.10.5293/IJFMS.2012.5.4.152
16.
IEC 60193,
1999
, “
Hydraulic Turbines, Storage Pumps and Pump-Turbines—Model Acceptance Tests
,” International Electrotechnical Commission, Geneva, Switzerland.
17.
Sheen
,
H. J.
,
Chen
,
W. J.
,
Jeng
,
S. Y.
, and
Huang
,
T. L.
,
1996
, “
Correlation of Swirl Number for a Radial-Type Swirl Generator
,”
Experiment. Therm. Fluid Sci.
,
12
, pp.
444
451
.10.1016/0894-1777(95)00135-2
18.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
19.
Denton
,
J. D.
, and
Singh
,
U. K.
,
1979
, Time Marching Methods for Turbomachinery Flow Calculation: Application of Numerical Methods to Flow Calculations in Turbomachichines, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, Belgium.
20.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Proc. International Conf. Multiphase Flow 2004
, Yokohama, Japan, Paper No. 152.
21.
Brennen
,
C. E.
,
2005
,
Fundamentals of Multiphase Flows
,
Cambridge
,
New York
, pp.
220
221
.
22.
Ishii
,
M.
, and
Hibiki
,
T.
,
2011
,
Thermo-Fluid Dynamics of Two-Phase Flow
, 2nd ed.,
Springer
,
New York
, pp.
393
395
.
23.
Kozubková
,
M.
,
Rautová
,
J.
, and
Bojko
,
M.
,
2012
, “
Mathematical Model of Cavitation and Modelling of Fluid Flow in Cone
,”
Procedia Eng.
,
39
, pp.
9
18
.10.1016/j.proeng.2012.07.002
24.
Kato
,
C.
,
2011
, “
Industry-University Collaborative Project on Numerical Predictions of Cavitating Flows in Hydraulic Machinery: Part 1—Benchmark Test on Cavitating Hydrofoils
,”
Proc. ASME-JSME-KSME 2011 Joint Fluids Eng. Conf.
, Hamamatsu, Japan, pp.
445
453
.
25.
Morgut
,
M.
, and
Nobile
,
E.
,
2012
, “
Numerical Predictions of Cavitating Flow Around Model Scale Propellers by CFD and Advanced Model Calibration
,”
Int. J. Rotating Machinery
,
2012
, p.
618180
.10.1155/2012/618180
26.
Zobeiri
,
A.
,
Kueny
,
J. L.
,
Farhat
,
M.
, and
Avellan
,
F.
,
2006
, “
Pump-Turbine Rotor-Stator Interactions in Generating Mode: Pressure Fluctuation in Distributor Channel
,”
Proc. 23rd IAHR Symp. Hydraulic Machinery & Systems
, Yokohama, Japan, Paper No. F235.
27.
Drtina
,
P.
, and
Sallaberger
,
M.
,
1999
, “
Hydraulic Turbines—Basic Principles and State-of-the-Art Computational Fluid Dynamics Applications
,”
Proc. IMechE C
,
213
, pp.
85
102
.
You do not currently have access to this content.