Abstract

Experimental and computational studies were performed to study the drag forces and the pressure distributions of a one-fifth scale model FIAT Linea at increasing yaw angle and two-vehicle platoon. Experiments were performed in the Uludag University Wind Tunnel (UURT) only for the yaw angles of 0 deg, 5 deg, and 10 deg due to the test section dimensional restriction. Supplementary tests were performed in the Ankara Wind Tunnel (ART) to evaluate the aerodynamic coefficients up to yaw angle of 40 deg. The test section blockage ratios were 20% and 1%, respectively, in the UURT and ART tunnels. The blockage effects for the yaw angles up to 10 deg were studied by the comparison of two wind tunnel results. The aerodynamic tests of two-vehicle platoon were performed in the ART tunnel at spacings of “x/L” 0, 0.5, and 1. Static pressure distributions were obtained from the model centerline and three vertical sections. In the numerical study, three-dimensional, incompressible, and steady governing equations were solved by star-ccm+ code with realizable k-ɛ two-layer turbulence model. Experimental and numerical Cp distributions and Cd values were found in good agreement for considered yaw angles and two-vehicle platoon. Maximum drag coefficient was obtained at yaw angle of 35 deg for both experimental and numerical calculations. The two-vehicle platoon analysis resulted with the significant drag coefficient improvement for the leading car at spacings of x/L  = 0 and 0.5, while for the tail car drag coefficient remained slightly above the vehicle in isolation.

References

1.
Yang
,
Z.
,
Schenkel
,
M.
, and
Fadler
,
G. J.
,
2003
, “
Corrections for the Pressure Gradient Effect on Vehicle Aerodynamic Drag
,”
SAE
Technical Paper No. 2003-01-0935.10.4271/2003-01-0935
2.
Aider
,
J.
,
Franc
,
J.
,
Beaudoin
,
O.
, and
Wesfreid
,
J. E.
,
2010
, “
Drag and Lift Reduction of a 3D Bluff-Body Using Active Vortex Generators
,”
Exp. Fluids
,
48
(
5
), pp.
771
789
.10.1007/s00348-009-0770-y
3.
Gustavsson
,
T.
, and
Melin
,
T.
,
2006
, “
Application of Vortex Generators to a Blunt Body
,” TRITA-AVE 13, KTH Engineering Sciences, Stockholm.
4.
Koike
,
M.
,
Nagayoshi
,
T.
, and
Hamamoto
,
N.
,
2004
, “
Research on Aerodynamic Drag Reduction by Vortex Generators
,” Mitsubishi Motors Research and Development Office, Technical Review No. 16.
5.
Kourta
,
A.
, and
Gillieron
,
P.
,
2009
, “
Impact of the Automotive Aerodynamic Control on the Economic Issues
,”
J. Appl. Fluid Mech.
,
2
(
2
), pp.
69
75
.
6.
Kumar
,
C. R.
,
Chowdary
,
J. U.
, and
Reddy
,
K. A.
,
2011
, “
Study of Aerodynamic Drag Reduction Using Vortex Generators
,”
Int. J. Adv. Eng., Sci. Technol.
,
7
(
10
), pp.
181
183
.
7.
Ahmed
,
S. R.
, and
Ramm
,
G.
,
1984
, “
Salient Features of the Time-Averaged Ground Vehicle Wake
,”
SAE
Technical Paper No. 840300.10.4271/840300
8.
Cogotti
,
A.
,
1998
, “
A Parametric Study of the Ground Effect of a Simplified Car Model
,”
SAE
Technical Paper No. 980031.10.4271/980031
9.
Heft
,
I. A.
,
Indinger
,
T.
, and
Adams
,
A. N.
,
2012
, “
Introduction of a New Realistic Generic Car Model for Aerodynamic Investigations
,”
SAE
Technical Paper No. 2012-01-0168.10.4271/2012-01-0168
10.
Strangfeld
,
C.
,
Wieser
,
D.
,
Schmidt
,
H.-J.
,
Woszidlo
,
R.
,
Nayeri
,
C.
, and
Paschereit
,
C.
,
2013
, “
Experimental Study of Baseline Flow Characteristics for the Realistic Car Model DrivAer
,”
SAE
Technical Paper No. 2013-01-1251.10.4271/2013-01-1251
11.
Docton
,
M. K. R.
,
1996
, “
The Simulation of Transient Cross Winds on Passenger Vehicles
,” Ph.D. thesis, Durham University, Old Elvet, Durham, UK.
12.
Guilmineau
,
E.
,
Chikhaoui
,
O.
,
Deng
,
G.
, and
Visonneau
,
M.
,
2013
, “
Cross Wind Effects on a Simplified Car Model by a DES Approach
,”
Comput. Fluids
,
78
, pp.
29
40
.10.1016/j.compfluid.2011.08.020
13.
Janssen
,
L. J.
, and
Hucho
,
W.-H.
,
1973
, “
The Effect of Various Parameters on the Aerodynamic Drag of Passenger Cars
,”
Advances in Road Vehicle Aerodynamics
,
British Hydromechanical Association, Cranfield
.
14.
Kohut
,
P.
,
Sulitka
,
M.
, and
Randa
,
Z.
,
2005
, “
Determination of Blockage Correction in Open-Jet Wind Tunnel
,”
16th International Symposium on Transport Phenomena (ISTP-16)
,
Prague
.
15.
Mieller
,
C.
,
2002
, “
Lockheed Georgia Low Speed Wind Tunnel Honda Civic Hatchback Airtab Modification Results
,” Lockheed Georgia Company Wind Tunnel Test No. 561.
16.
Tan
,
J.
,
Chen
,
Z.
,
Hu
,
Y.
,
Parameswaran
,
S.
,
Rahman
,
S.
,
Gleason
,
M.
, and
Sun
,
R.
,
2010
, “
Effects of Cross Wind on Sport Utility Vehicles (SUV): A Computational Study
,”
The Fifth International Symposium on Computational Wind Engineering (CWE2010)
,
Chapel Hill, NC
, May 23–27.
17.
Tsubokura
,
M.
,
Nakashima
,
T.
,
Kitayama
,
M.
,
Ikawa
,
Y.
,
Doh
,
D. H.
, and
Kobayashi
,
T.
,
2010
, “
Large Eddy Simulation on the Unsteady Aerodynamic Response of a Road Vehicle in Transient Crosswinds
,”
Int. J. Heat Fluid Flow
,
31
(
6
), pp.
1075
1086
.10.1016/j.ijheatfluidflow.2010.05.008
18.
Howell
,
J. P.
,
1993
, “
Shape Features Which Influence Crosswind Sensitivity
,”
Proc. Inst. Mech. Eng., Part E
,
9
, pp.
43
52
.
19.
Zabat
,
M.
,
Stabile
,
N.
,
Frascaroli
,
S.
, and
Browand
,
F.
,
1995
, “
Drag Forces Experienced by 2, 3 & 4-Vehicle Platoons at Close Spacings
,”
SAE
Technical Paper No. 940421.10.4271/940421
20.
Hong
,
P.
,
Marcu
,
B.
,
Browand
,
F.
, and
Tucker
,
A.
,
1998
, “
Drag Forces Experienced by Two, Full-Scale Vehicles at Close Spacing
,” University of Southern California, California Path Research Report No. UCB-ITS-PRR-98-5.
21.
Orselli
,
E.
,
2006
, “
Computation of Drag Force on Single and Close-Following Vehicles
,” M.S. thesis, Middle East Technical University, Mechanical Engineering Department, Ankara, Turkey.
22.
Rajamani
,
G. K.
,
2006
, “
CFD Analysis of Air Flow Interactions in Vehicle Platoons
,” M.S. thesis, School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Australia.
23.
Schito
,
P.
, and
Braghin
,
F.
,
2012
, “
Numerical and Experimental Investigation on Vehicles in Platoon
,”
SAE Int. J. Commer. Veh.
,
5
(
1
), pp.
63
71
.10.4271/2012-01-0175
24.
Tsuei
,
L.
, and
Savas
,
O.
,
2001
, “
Transient Aerodynamics of Vehicle Platoons During In-Line Oscillations
,”
J. Wind Eng. Ind. Aerodyn.
,
89
(
13
), pp.
1085
1111
.10.1016/S0167-6105(01)00073-3
25.
Watkins
,
S.
, and
Vino
,
G.
,
2008
, “
The Effect of Vehicle Spacing on the Aerodynamics of a Representative Car Shape
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
6–7
), pp.
1232
1239
.10.1016/j.jweia.2007.06.042
26.
Altinisik
,
A.
,
Kutukceken
,
E.
, and
Umur
,
H.
,
2015
, “
Experimental and Numerical Aerodynamic Analysis of a Passenger Car: Influence of the Blockage Ratio on Drag Coefficient
,”
ASME J. Fluid Eng.
,
137
(
8
), p.
081104
.10.1115/1.4030183
27.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainty in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
28.
Williams
,
J.
,
Quinlan
,
W. J.
,
Hacket
,
J. E.
,
Thompson
,
S. A.
,
Marinaccio
,
T.
, and
Robertson
,
A.
,
1994
, “
A Calibration Study of CFD for Automotive Shapes and CD
,”
SAE
Technical Paper No. 940323.10.4271/940323
29.
Gaylard
,
A. P.
,
Baxendale
,
A. J.
, and
Howell
,
J. P.
,
1998
, “
The Use of CFD to Predict the Aerodynamic Characteristics of Simple Automotive Shapes
,”
SAE
Technical Paper No. 980036.10.4271/980036
30.
Connor
,
C.
,
Kharazi
,
A.
,
Walter
,
J.
, and
Martindale
,
B.
,
2006
, “
Comparison of Wind Tunnel Configurations for Testing Closed-Wheel Race Cars: A CFD Study
,”
SAE
Technical Paper No. 2006-01-3620.10.4271/2006-01-3620
31.
Mokhtar
,
W. A.
,
2008
, “
Aerodynamics of High-Lift Wings With Ground Effect for Racecars
,”
SAE
Technical Paper No. 2008-01-0656.10.4271/2008-01-0656
32.
Ahmad
,
N. E.
,
Abo-Serie
,
E.
, and
Gaylard
,
A.
,
2010
, “
Mesh Optimization for Ground Vehicle Aerodynamics
,”
CFD Lett.
,
2
(
1
), pp.
54
65
.
33.
Heinzelmann
,
B.
,
Indinger
,
T.
,
Adams
,
N.
, and
Blanke
,
R.
,
2012
, “
Experimental and Numerical Investigation of the Under Hood Flow With Heat Transfer for a Scaled Tractor-Trailer
,”
SAE Int. J. Commer. Veh.
,
5
(
1
), pp.
42
56
.10.4271/2012-01-0107
34.
Regin
,
F. A.
,
Manimanoharan
,
M.
,
Reddy
,
A. B.
, and
Nigam
,
P.
,
2013
, “
Aerodynamic Analysis of Cabriolet Passenger Car: A Design Approach
,”
SAE
Paper No. 2013-01-0037.10.4271/2014-01-0603
35.
Zhang
,
Y.
,
Ding
,
W.
, and
Zhang
,
Y.
,
2014
, “
Aerodynamic Shape Optimization Based on the MIRA Reference Car Model
,” SAE Technical Paper No. 2014-01-0603.
36.
Hanjalic
,
K.
,
2005
, “
Will RANS Survive LES? A View of Perspectives
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
831
839
.10.1115/1.2037084
37.
Roy
,
J. C.
,
Payne
,
J.
, and
Payne
,
M. M.
,
2006
, “
RANS Simulations of a Simplified Tractor/Trailer Geometry
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
1083
1089
.10.1115/1.2236133
38.
Makowski
,
F. T.
, and
Kim
,
S.-U.
,
2000
, “
Advances in External-Aero Simulation of Ground Vehicles Using the Steady RANS Equations
,”
SAE
Technical Paper No. 2000-01-0484.10.4271/2000-01-0484
39.
Jakirlic
,
S.
,
Kutej
,
L.
,
Basara
,
B.
, and
Tropea
,
C.
,
2014
, “
Computational Study of the Aerodynamics of a Realistic Car Model by Means of RANS and Hybrid RANS/LES Approaches
,”
SAE Int. J. Passenger Cars Mech. Syst.
,
7
(
2
), pp.
559
574
.10.4271/2014-01-0594
40.
Cilies
,
J. A.
,
Issakhanian
,
E.
,
Jimenez
,
J.
, and
Iaccarino
,
G.
,
2012
, “
An Aerodynamic Investigation of an Isolated Stationary Formula 1 Wheel Assembly
,”
ASME J. Fluids Eng.
,
134
(
12
), p.
021101
.10.1115/1.4005768
41.
Veluri
,
P. S.
,
Roy
,
C. J.
,
Ahmed
,
A.
,
Rifki
,
R.
,
Worley
,
J. C.
, and
Rectenwald
,
B.
,
2009
, “
Joint Computational/Experimental Aerodynamic Study of a Simplified Tractor/Trailer Geometry
,”
ASME J. Fluids Eng.
,
131
(
8
), p.
081201
.10.1115/1.3155995
42.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
43.
Shih
,
T.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
44.
Singh
,
S. N.
,
Rai
,
L.
,
Puri
,
P.
, and
Bhatnagar
,
A.
,
2005
, “
Effect of Moving Surface on the Aerodynamic Drag of Road Vehicles
,”
Proc. Inst. Mech. Eng., Part D
,
219
(
2
), pp.
127
134
.10.1243/095440705X5886
45.
Rodi
,
W.
,
1991
, “
Experience With Two-Layer Models Combining the k-ɛ Model With a One-Equation Model Near the Wall
,”
AIAA
Paper No. 91-0216.10.2514/6.1991-216
46.
Suria
,
O. V.
,
Testa
,
E.
,
Repici
,
G.
,
Peraudo
,
P.
, and
Maggiore
,
P.
,
2011
, “
A PEM Fuel Cell Laminar and Turbulent Models Comparison, Aiming at Identifying Small-Scale Plate Channel Phenomena: A Mesh Independent Configuration
,”
SAE
Technical Paper No. 2011-01-1177.10.4271/2011-01-1177
47.
Buchheim
,
R.
,
Unger
,
R.
,
Carr
,
G. W.
,
Cogotti
,
A.
,
Carrone
,
A.
,
Kuhn
,
A.
, and
Nilsson
,
L. U.
,
1980
, “
Comparison Tests Between Major European Automotive Wind Tunnels
,”
SAE
Technical Paper No. 800140.10.4271/800140
48.
Amromin
,
E. L.
,
2013
, “
Vehicles Drag Reduction With Control of Critical Reynolds Number
,”
ASME J. Fluids Eng.
,
135
(
10
), p.
101105
.10.1115/1.4024803
You do not currently have access to this content.