Internal recirculation in a moving droplet, enforced by the presence of fluid–fluid interfaces, plays an important role in several droplet-based microfluidic devices as it could enhance mixing, heat transfer, and chemical reaction. The effect of slip on droplet circulation is studied for two canonical steady-state problems: two-phase Couette, boundary-driven, and Poiseuille, pressure/body force-driven, flows. A simple model is established to estimate the circulation in a droplet and capture the effect of slip and aspect ratio on the droplet circulation. The circulation in a droplet is shown to decrease with increasing slip length in the case of a boundary-driven flow, while for a body force-driven flow it is independent of slip length. Scaling parameters for circulation and slip length are identified from the circulation model. The model is validated using continuum and molecular dynamics (MD) simulations. The effect of slip at the fluid–fluid interface on circulation is also briefly discussed. The results suggest that active manipulation of velocity slip, e.g., through actuation of hydrophobicity, could be employed to control droplet circulation and consequently its mixing rate.

References

1.
Reyes
,
D. R.
,
Iossifidis
,
D.
,
Auroux
,
P.-A.
, and
Manz
,
A.
,
2002
, “
Micro Total Analysis Systems. 1. Introduction, Theory, and Technology
,”
Anal. Chem.
,
74
(
12
), pp.
2623
2636
.
2.
Auroux
,
P.-A.
,
Iossifidis
,
D.
,
Reyes
,
D. R.
, and
Manz
,
A.
,
2002
, “
Micro Total Analysis Systems. 2. Analytical Standard Operations and Applications
,”
Anal. Chem.
,
74
(
12
), pp.
2637
2652
.
3.
Koh
,
W. H.
,
Lok
,
K. S.
, and
Nguyen
,
N. T.
,
2013
, “
A Digital Micro Magnetofluidic Platform for Lab-on-a-Chip Applications
,”
ASME J. Fluids Eng.
,
135
(
2
), p.
021302
.
4.
Burns
,
J.
, and
Ramshaw
,
C.
,
2001
, “
The Intensification of Rapid Reactions in Multiphase Systems Using Slug Flow in Capillaries
,”
Lab Chip
,
1
(
1
), pp.
10
15
.
5.
Dummann
,
G.
,
Quittmann
,
U.
,
Gröschel
,
L.
,
Agar
,
D. W.
,
Wörz
,
O.
, and
Morgenschweis
,
K.
,
2003
, “
The Capillary-Microreactor: A New Reactor Concept for the Intensification of Heat and Mass Transfer in Liquid–Liquid Reactions
,”
Catal. Today
,
79–80
, pp.
433
439
.
6.
Jaritsch
,
D.
,
Holbach
,
A.
, and
Kochmann
,
N.
,
2014
, “
Counter-Current Extraction in Microchannel Flow: Current Status and Perspectives
,”
ASME J. Fluids Eng.
,
136
(
9
), p.
091211
.
7.
Mohseni
,
K.
,
2005
, “
Effective Cooling of Integrated Circuits Using Liquid Alloy Electrowetting
,”
Semiconductor Thermal Measurement, Modeling, and Management Symposium
(
SEMI-Therm
),
IEEE
,
San Jose, CA
, Mar. 15–17, pp.
20
25
.
8.
Baird
,
E.
, and
Mohseni
,
K.
,
2008
, “
Digitized Heat Transfer: A New Paradigm for Thermal Management of Compact Micro-Systems
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
1
), pp.
143
151
.
9.
Hosokawa
,
K.
,
Fujii
,
T.
, and
Endo
,
I.
,
1999
, “
Handling of Picoliter Liquid Samples in a Poly(dimethylsiloxane)-Based Microfluidic Device
,”
Anal. Chem.
,
71
(
20
), pp.
4781
4785
.
10.
Song
,
H.
,
Tice
,
J. D.
, and
Ismagilov
,
R. F.
,
2003
, “
A Microfluidic System for Controlling Reaction Networks in Time
,”
Angew. Chem. Int. Ed.
,
42
(
7
), pp.
768
772
.
11.
Navier
,
C.
,
1823
, “
Memoire sur les lois du mouvement des fluides
,”
Mem. Acad. R. Sci. Inst. Fr.
,
6
, pp.
389
440
.
12.
Maxwell
,
J.
,
1890
,
The Scientific Papers of James Clerk Maxwell
, Vol.
V2
, Cambridge University Press, Cambridge, pp.
703
711
.
13.
Thompson
,
P.
, and
Troian
,
S.
,
1997
, “
A General Boundary Condition for Liquid Flow at Solid Surfaces
,”
Nature
,
389
, pp.
360
362
.
14.
Thalakkottor
,
J.
, and
Mohseni
,
K.
,
2013
, “
Analysis of Slip in a Flow With an Oscillating Wall
,”
Phys. Rev. E
,
87
, p.
033018
.
15.
Koplik
,
J.
, and
Banavar
,
J.
,
1995
, “
Continuum Deductions From Molecular Hydrodynamics
,”
Annu. Rev. Fluid Mech.
,
27
, pp.
257
292
.
16.
Koplik
,
J.
,
Banavar
,
J.
, and
Willemsen
,
J.
,
1989
, “
Molecular Dynamics of Fluid Flow at Solid Surfaces
,”
Phys. Fluids A
,
1
(5), pp.
781
794
.
17.
Koplik
,
J.
,
Banavar
,
J.
, and
Willemsen
,
J.
,
1988
, “
Molecular Dynamics of Poiseuille Flow and Moving Contact Lines
,”
Phys. Rev. Lett.
,
60
(
13
), pp.
1282
1285
.
18.
Thompson
,
P.
, and
Robbins
,
M.
,
1989
, “
Simulations of Contact Line Motion: Slip and the Dynamic Contact Angle
,”
Phys. Rev. Lett.
,
63
, pp.
766
769
.
19.
Paik
,
P.
,
Pamula
,
V. K.
, and
Fair
,
R. B.
,
2003
, “
Rapid Droplet Mixers for Digital Microfluidic Systems
,”
Lab Chip
,
3
(
2
), pp.
253
259
.
20.
DeVoria
,
A. C.
, and
Mohseni
,
K.
,
2005
, “
Droplets in an Axisymmetric Microtube: Effects of Aspect Ratio and Fluid Interfaces
,”
Phys. Fluids
,
27
(1), pp.
80
101
.
21.
Taheri
,
P.
,
Torrilhon
,
M.
, and
Struchtrup
,
H.
,
2009
, “
Couette and Poiseuille Microflows: Analytical Solutions for Regularized 13-Moment Equations
,”
Phys. Fluids
,
21
(
1
), p.
017102
.
22.
Popinet
,
S.
,
2009
, “
An Accurate Adaptive Solver for Surface-Tension-Driven Interfacial Flow
,”
J. Comput. Phys.
,
228
(
16
), pp.
5838
5866
.
23.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
24.
Kistler
,
S. F.
,
1993
,
Wettability
,
J. C.
Berg
, ed.,
Marcel Dekker
,
New York
.
25.
Baroud
,
C. N.
,
Gallaire
,
F.
, and
Dangla
,
R.
,
2010
, “
Dynamics of Microfluidic Droplets
,”
Lab Chip
,
10
(
16
), pp.
2032
2045
.
26.
Young
,
T.
,
1805
, “
An Essay on the Cohesion of Fluids
,”
Philos. Trans. R. Soc. London
,
95
, pp.
65
87
.
27.
Laplace
,
P.
,
1805
,
Traité de mécanique céleste/par, PS Laplace, tome quatrieme
, Vol.
4
,
de l'Imprimerie de Crapelet
,
Paris
.
28.
Fuerstman
,
M. J.
,
Lai
,
A.
,
Thurlow
,
E.
,
Shevkoplyas
,
S. S.
,
Stone
,
H. A.
, and
Whitesides
,
G. M.
,
2007
, “
The Pressure Drop Along Rectangular Microchannel Containing Bubbles
,”
Lab Chip
,
7
(
11
), pp.
1479
1489
.
29.
Mohseni
,
K.
, and
Baird
,
E.
,
2007
, “
A Unified Velocity Model for Digital Microfluidics
,”
Nanoscale Microscale Thermophys. Eng.
,
11
(
1–2
), pp.
109
120
.
30.
Ou
,
J.
,
Perot
,
B.
, and
Rothstein
,
J. P.
,
2004
, “
Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
16
(
12
), pp.
4635
4643
.
31.
Choi
,
C. H.
, and
Kim
,
C. J.
,
2006
, “
Large Slip of Aqueous Liquid Flow Over a Nanoengineered Superhydrophobic Surface
,”
Phys. Rev. Lett.
,
96
(
6
), p.
066001
.
32.
Koplik
,
J.
, and
Banavar
,
J. R.
,
2006
, “
Slip, Immiscibility, and Boundary Conditions at the Liquid–Liquid Interface
,”
Phys. Rev. Lett.
,
96
(
4
), p.
044505
.
You do not currently have access to this content.