This paper describes the design of a nonaxisymmetric hub contouring in a shroudless axial flow compressor cascade operating at near stall condition. Although an optimum tip clearance (TC) reduces the total pressure loss, further reduction in the loss was achieved using hub contouring. The design methodology presented here combines an evolutionary principle with a three-dimensional (3D) computational fluid dynamics (CFD) flow solver to generate different geometric profiles of the hub systematically. The resulting configurations were preprocessed by GAMBIT© and subsequently analyzed computationally using ANSYSFluent©. The total pressure loss coefficient was used as a single objective function to guide the search process for the optimum hub geometry. The resulting three dimensionally complex hub promises considerable benefits discussed in detail in this paper. A reduction of 15.2% and 16.23% in the total pressure loss and secondary kinetic energy (SKE), respectively, is achieved in the wake region. An improvement of 4.53% in the blade loading is observed. Other complimentary benefits are also listed in the paper. The majority of the benefits are obtained away from the hub region. The contoured hub not only alters the pitchwise static pressure gradient but also acts as a vortex generator in an effort to alleviate the total pressure loss. The results confirm that nonaxisymmetric contouring is an effective method for reducing the losses and thereby improving the performance of the cascade.

References

1.
Rose
,
M. G.
,
1994
, “
Non-Axisymmetric Endwall Profiling in the HP NGV's of an Axial Flow Gas Turbine
,”
ASME
Paper No. GT1994-249.
2.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Non-Axisymmetric Turbine End Wall Design: Part I—Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
(
2
), pp.
278
285
.10.1115/1.555445
3.
Hartland
,
J.
,
Gregory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design: Part II—Experimental Validation
,”
ASME J. Turbomach.
,
122
(
2
), pp.
286
293
.10.1115/1.555446
4.
Ingram
,
G.
,
Gregory-Smith
,
D.
, and
N.
Harvey
,
2005
, “
Investigation of a Novel Secondary Flow Feature in a Turbine Cascade With End Wall Profiling
,”
ASME J. Turbomach
,
127
(
1
), pp.
209
214
.10.1115/1.1812321
5.
Ingram
,
G.
,
Gregory-Smith
,
D.
, and
Harvey
,
N.
,
2005
, “
The Benefits of Turbine Endwall Profiling in a Cascade
,”
Proc. Inst. Mech. Eng. Part A
,
219
(
1
), pp.
49
59
.10.1243/095765005X6863
6.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
,
2007
, “
Application Of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,”
ASME
Paper No. GT2007-27579. 10.1115/GT2007-27579
7.
Germain
,
T.
,
Nagel
,
M.
,
Raab
,
I.
,
Schuepbach
,
P.
,
Abhari
,
R. S.
, and
Rose
,
M.
,
2008
, “
Improving Efficiency of a High Work Turbine Using Non-Axisymmetric Endwalls, Part I—Endwall Design and Performance
,”
ASME
Paper No. GT2008-50469. 10.1115/GT2008-50469
8.
Knezevici
,
D. C.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E. A.
,
2010
, “
Measurements of Secondary Losses in a Turbine Cascade With the Implementation of Non-Axisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
132
(
1
), p.
011013
.10.1115/1.3072520
9.
LaFleur
,
R. S.
,
2008
, “
Second Vane Total Pressure Loss Due to Endwall Iceform Contouring
,”
ASME
Paper No. GT2008-50439. 10.1115/GT2008-50439
10.
Hu
,
S.
,
Lu
,
X.
,
Zhang
,
H.
,
Zhu
,
J.
, and
Xu
,
Q.
,
2010
, “
Numerical Investigation of a High-Subsonic Axial-Flow Compressor Rotor With Non-Axisymmetric Hub Endwall
,”
J. Therm. Sci.
,
19
(
1
), pp.
14
20
.10.1007/s11630-010-0014-8
11.
Poehler
,
T.
,
Gier
,
J.
, and
Jeschke
,
P.
,
2010
, “
Numerical and Experimental Analysis of the Effects of Non-Axisymmetric Contoured Stator Endwalls in an Axial Turbine
,”
ASME
Paper No. GT2010-23350. 10.1115/GT2010-23350
12.
Torre
,
D.
,
Vázquez
,
R.
,
de la Rosa Blanco
,
E.
, and
Hodson
,
H. P.
,
2011
, “
A New Alternative for Reduction in Secondary Flows in Low Pressure Turbines
,”
ASME J. Turbomach.
,
133
(
1
), p.
011029
.10.1115/1.4001365
13.
Miyoshi
,
I.
,
Higuchi
,
S.
, and
Kishibe
,
T.
,
2013
, “
Improving the Performance of a High Pressure Gas Turbine Stage Using a Profiled Endwall
,”
ASME
Paper No. GT2013-95148. 10.1115/GT2013-95148
14.
Snedden
,
G.
,
Dunn
,
D.
,
Ingram
,
G.
, and
Gregory-Smith
,
D.
,
2010
, “
The Performance of a Generic Non-Axisymmetric End Wall in a Single Stage, Rotating Turbine at on and Offdesign Conditions
,”
ASME
Paper No. GT2010-22006. 10.1115/GT2010-22006
15.
Hilfer
,
M.
,
Ingram
,
G.
, and
Hogg
,
S.
,
2012
, “
Endwall Profiling With Tip Clearance Flows
,”
ASME
Paper No. GT2012-68488.10.1115/GT2012-68488
16.
McIntosh
,
J.
,
MacPherson
,
R.
,
Ingram
,
I.
, and
Hogg
,
S.
,
2011
, “
Profiled Endwall Design Using Genetic Algorithms With Different Objective Functions
,”
ASME
Paper No. GT2011-45836. 10.1115/GT2011-45836
17.
Peacock
,
R. E.
,
1982
, “
A Review of Turbomachinery Tip Gap Effects Part 1—Cascades
,”
Int. J. Heat Fluid Flow
,
3
(
4
), pp.
185
193
.10.1016/0142-727X(82)90017-0
18.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2007
, “
Interaction of Tip Clearance Flow and Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
129
, pp.
679
685
.10.1115/1.2720876
19.
Luo
,
J.
,
Xiong
,
J.
,
Liu
,
F.
, and
McBean
,
I.
,
2010
, “
Secondary Flow Reduction by Blade Redesign and Endwall Contouring Using an Adjoint Optimization Method
,”
ASME
Paper No. GT2010-22061. 10.1115/GT2010-22061
20.
Varpe
,
M. K.
, and
Pradeep
,
A. M.
,
2013
, “
Numerical Investigation of the Effect of Moving Endwall and Tip Clearance on the Losses in a Low Speed Axial Flow Compressor Cascade
,”
ASME
Paper No. GTINDIA2013-3596.10.1115/GTINDIA2013-3596
21.
Varpe
,
M.
, and
Pradeep
,
A. M.
,
2013
,“
Investigation of the Shear Flow Effect and Tip Clearance on a Low Speed Axial Flow Compressor Cascade
,”
Int. J. Rotating Mach.
,
2013
, p. 490543.10.1155/2013/490543
You do not currently have access to this content.