Passive, heat actuated ejector pumps offer simple and energy-efficient options for a variety of end uses with no electrical input or moving parts. In an effort to obtain insights into ejector flow phenomena and to evaluate the effectiveness of commonly used computational and analytical tools in predicting these conditions, this study presents a set of shadowgraph images of flow inside a large-scale air ejector and compares them to both computational and first-principles-based analytical models of the same flow. The computational simulations used for comparison apply k-ε renormalization group (RNG) and k-ω shear stress transport (SST) turbulence models to two-dimensional (2D), locally refined rectangular meshes for ideal gas air flow. A complementary analytical model is constructed from first principles to approximate the ejector flow field. Results show that on-design ejector operation is predicted with reasonable accuracy, but accuracy with the same models is not adequate at off-design conditions. Exploration of local flow features shows that the k-ω SST model predicts the location of flow features, as well as global inlet mass flow rates, with greater accuracy. The first-principles model demonstrates a method for resolving the ejector flow field from relatively little visual data and shows the evolving importance of mixing, momentum, and heat exchange with the suction flow with distance from the motive nozzle exit. Such detailed global and local exploration of ejector flow helps guide the selection of appropriate turbulence models for future ejector design purposes, predicts locations of important flow phenomena, and allows for more efficient ejector design and operation.

References

1.
Chunnanond
,
K.
, and
Aphornratana
,
S.
,
2004
, “
Ejectors: Applications in Refrigeration Technology
,”
Renewable Sustainable Energy Rev.
,
8
(
2
), pp.
129
155
.10.1016/j.rser.2003.10.001
2.
ASHRAE
,
1983
, “
Steam-Jet Refrigeration Equipment
,”
Equipment Handbook
,
ASHRAE
,
Atlanta, GA, Chap. 13
.
3.
Matsuo
,
K.
,
Miyazato
,
Y.
, and
Kim
,
H.-D.
,
1999
, “
Shock Train and Pseudo-Shock Phenomena in Internal Gas Flows
,”
Prog. Aerosp. Sci.
,
35
(
1
), pp.
33
100
.10.1016/S0376-0421(98)00011-6
4.
Keenan
,
J. H.
, and
Neumann
,
E. P.
,
1942
, “
A Simple Air Ejector
,”
ASME J. Appl. Mech.
,
9
(
2
), pp.
A75
A81
.
5.
Keenan
,
J. H.
,
Neumann
,
E. P.
, and
Lustwerk
,
F.
,
1950
, “
An Investigation of Ejector Design by Analysis and Experiment
,”
ASME J. Appl. Mech.
,
17
(
3
), pp.
299
309
.
6.
Huang
,
B. J.
,
Chang
,
J. M.
,
Wang
,
C. P.
, and
Petrenko
,
V. A.
,
1999
, “
1-D Analysis of Ejector Performance
,”
Int. J. Refrig.
,
22
(
5
), pp.
354
364
.10.1016/S0140-7007(99)00004-3
7.
Desevaux
,
P.
, and
Lanzetta
,
F.
,
2004
, “
Computational Fluid Dynamic Modelling of Pseudo-Shock Inside a Zero-Secondary Flow Ejector
,”
AIAA J.
,
42
(
7
), pp.
1480
1483
.10.2514/1.1128
8.
Bartosiewicz
,
Y.
,
Aidoun
,
Z.
,
Desevaux
,
P.
, and
Mercadier
,
Y.
,
2005
, “
Numerical and Experimental Investigations on Supersonic Ejectors
,”
Int. J. Heat Fluid Flow
,
26
(
1
), pp.
56
70
.10.1016/j.ijheatfluidflow.2004.07.003
9.
Hemidi
,
A.
,
Henry
,
F.
,
Leclaire
,
S.
,
Seynhaeve
,
J.-M.
, and
Bartosiewicz
,
Y.
,
2009
, “
CFD Analysis of a Supersonic Air Ejector. Part I: Experimental Validation of Single-Phase and Two-Phase Operation
,”
Appl. Therm. Eng.
,
29
(
8–9
), pp.
1523
1531
.10.1016/j.applthermaleng.2008.07.003
10.
Hemidi
,
A.
,
Henry
,
F.
,
Leclaire
,
S.
,
Seynhaeve
,
J.-M.
, and
Bartosiewicz
,
Y.
,
2009
, “
CFD Analysis of a Supersonic Air Ejector. Part II: Relation Between Global Operation and Local Flow Features
,”
Appl. Therm. Eng.
,
29
(
14–15
), pp.
2990
2998
.10.1016/j.applthermaleng.2009.03.019
11.
Meakhail
,
T. A.
,
Zien
,
Y.
,
Elsallak
,
M.
, and
AbdelHady
,
S.
,
2008
, “
Experimental Study of the Effect of Some Geometric Variables and Number of Nozzles on the Performance of a Subsonic Air–Air Ejector
,”
Proc. Inst. Mech. Eng., Part A
,
222
(
8
), pp.
809
818
.10.1243/09576509JPE618
12.
Desevaux
,
P.
,
Prenel
,
J. P.
, and
Jacquet
,
P.
,
1994
, “
Static Pressure Measurement Along the Centerline of an Induced Flow Ejector
,”
Exp. Fluids
,
16
(
3–4
), pp.
289
291
.10.1007/BF00206550
13.
Desevaux
,
P.
,
2001
, “
A Method for Visualizing the Mixing Zone Between Two Co-Axial Flows in an Ejector
,”
Opt. Lasers Eng.
,
35
(
5
), pp.
317
323
.10.1016/S0143-8166(01)00020-3
14.
Desevaux
,
P.
,
Bouhanguel
,
A.
,
Girardot
,
L.
, and
Gavignet
,
E.
,
2013
, “
On the Use of Laser Tomography Techniques for Validating CFD Simulations of the Flow in Supersonic Ejectors
,”
Int. J. Fluid Mech. Res.
,
40
(
1
), pp.
60
70
.10.1615/InterJFluidMechRes.v40.i1.50
15.
Rao
,
M. V. S.
, and
Jagadeesh
,
G.
,
2013
, “
Visualization and Image Processing of Compressible Flow in a Supersonic Gaseous Ejector
,”
J. Indian Inst. Sci.
,
93
(
1
), pp.
57
66
.
16.
Matsuo
,
K.
,
Sasaguchi
,
K.
,
Kiyotoki
,
Y.
, and
Mochizuki
,
H.
,
1982
, “
Investigation of Supersonic Air Ejectors. Part 2: Effects of Throat-Area-Ratio on Ejector Performance
,”
Bull. Jpn. Soc. Mech. Eng.
,
25
(
210
), pp.
1898
1905
.10.1299/jsme1958.25.1898
17.
Olden
,
G. W.
,
Lineberry
,
D. M.
,
Linn
,
C. A. B.
,
Landrum
,
B. D.
, and
Hawk
,
C. W.
,
2005
, “
Low-Cost Flow Visualization for a Supersonic Ejector
,” 41st
AIAA/ASME/SAE/ASEE
Joint Propulsion Conference and Exhibition
,
Tucson
,
AZ
.10.2514/6.2005-3523
18.
Zare-Behtash
,
H.
,
Gongora-Orozco
,
N.
, and
Kontis
,
K.
,
2011
, “
Effect of Primary Jet Geometry on Ejector Performance: A Cold-Flow Investigation
,”
Int. J. Heat Fluid Flow
,
32
(
3
), pp.
596
607
.10.1016/j.ijheatfluidflow.2011.02.013
19.
Zare-Behtash
,
H.
,
Gongora-Orozco
,
N.
,
Kontis
,
K.
, and
Holder
,
S. J.
,
2009
, “
Application of Novel Pressure-Sensitive Paint Formulations for the Surface Flow Mapping of High-Speed Jets
,”
Exp. Therm. Fluid Sci.
,
33
(
5
), pp.
852
864
.10.1016/j.expthermflusci.2009.03.002
20.
Settles
,
G. S.
,
2001
,
Schlieren and Shadowgraph Techniques
,
Springer
,
New York
.10.1007/978-3-642-56640-0
21.
Saad
,
M. A.
,
1993
,
Compressible Fluid Flow
, 2nd ed.,
Prentice-Hall, Inc.
,
Englewood Cliffs, NJ
.
22.
John
,
J. E. A.
,
1984
,
Gas Dynamics
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.