A computational fluid dynamics (CFD) simulation is performed via ansys–CFX for a fully developed turbulent flow in concentric annuli with two radius ratios (R1/R2 = 0.4 and 0.5) at three Reynolds numbers (Re = 8900, 26,600, and 38,700) in terms of the hydraulic diameter D and the bulk velocity Ub. Near-wall turbulence structures close to the inner and outer walls are characterized by analyzing the first-order and second-order statistics. Effects of transverse curvature and the Reynolds number on development of the turbulence structures are emphasized. This study demonstrates the ability to predict the asymmetric features of turbulent flows in annular pipes by using the Reynolds-Averaged Navier–Stokes (RANS) model. Estimation of viscous dissipation in the flow using a RANS model is compared with direct numerical simulation (DNS) results for the first time.

References

1.
Germaine
,
E.
,
Mydlarski
,
E.
, and
Cortelezzi
,
L.
,
2014
, “
Evolution of the Scalar Dissipation Rate Downstream of a Concentrated Line Source in Turbulent Channel Flow
,”
J. Fluid Mech.
,
749
, pp.
227
274
.
2.
Brighton
,
J. A.
, and
Jones
,
J. B.
,
1964
, “
Fully Developed Turbulent Flow in Annuli
,”
ASME J. Basic Eng. D
,
86
(
4
), pp.
835
844
.
3.
Quarmby
,
A.
,
1967
, “
On the Use of the Preston Tube in Concentric Annuli
,”
J. R. Aeronaut. Soc.
,
71
, pp.
47
49
.
4.
Kjellström
,
B.
, and
Hedberg
,
S.
,
1966
, “
On Shear Stress Distributions for Flow in Smooth or Partially Rough Annuli
,” A B Atomenergi, Stockholm, Report No. AE-243.
5.
Lawn
,
C. J.
, and
Elliott
,
C. J.
,
1972
, “
Fully Developed Turbulent Flow Through Concentric Annuli
,”
J. Mech. Eng. Sci.
,
14
(
3
), pp.
195
204
.
6.
Rehme
,
K.
,
1974
, “
Turbulent Flow in Smooth Concentric Annuli With Small Radius Ratios
,”
J. Fluid Mech.
,
64
(
2
), pp.
263
287
.
7.
Nouri
,
J. M.
,
Umur
,
H.
, and
Whitelaw
,
J. H.
,
1993
, “
Flow of Newtonian and Non-Newtonian Fluids in Concentric and Eccentric Annuli
,”
J. Fluid Mech.
,
253
, pp.
617
641
.
8.
Satake
,
S.
, and
Kawamura
,
H.
,
1993
, “
Large Eddy Simulation of Turbulent Flow in Concentric Annuli With a Thin Inner Rod
,”
9th Symposium on Turbulent Shear Flows
, Kyoto, Japan, Aug. 16–18, pp.
5.5.1
5.5.6
.
9.
Neves
,
J. C.
,
Moin
,
P.
, and
Moser
,
R. D.
,
1994
, “
Effects of Convex Transverse Curvature on Wall-Bounded Turbulence Part 1: The Velocity and Vorticity
,”
J. Fluid Mech.
,
272
, pp.
349
381
.
10.
Chung
,
S. Y.
,
Rhee
,
G. H.
, and
Sung
,
H. J.
,
2002
, “
Direct Numerical Simulation of Turbulent Concentric Annular Pipe Flow Part 1: Flow Field
,”
Int. J. Heat Fluid Flow
,
23
(
4
), pp.
426
440
.
11.
Liu
,
N. S.
, and
Lu
,
X. Y.
,
2004
, “
Large Eddy Simulation of Turbulent Concentric Annular Channel Flows
,”
Int. J. Numer. Mech. Fluids
,
45
(
12
), pp.
1317
1338
.
12.
Kalitzin
,
G.
,
Medic
,
G.
,
Iaccarino
,
G.
, and
Durbin
,
P.
,
2005
, “
Near-Wall Behavior of RANS Turbulence Models and Implications for Wall Functions
,”
J. Comput. Phys.
,
204
(
1
), pp.
265
291
.
13.
Corredor
,
R. F. F.
,
Bizhani
,
M.
,
Ashrafuzzaman
,
M.
, and
Kuru
,
E.
,
2014
, “
An Experimental Investigation of Turbulent Water Flow in Concentric Annulus Using Particle Image Velocimetry Technique
,”
ASME J. Fluids Eng.
,
136
(
5
), p.
051203
.
14.
François
,
G. S.
,
2007
, “
About Boussinesq's Turbulent Viscosity Hypothesis: Historical Remarks and a Direct Evaluation of Its Validity
,”
C. R. Mėcanique
,
335
(
9–10
), pp.
617
627
.
15.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
16.
Menter
,
F. R.
,
1993
, “
Multiscale Model for Turbulent Flows
,”
24th Fluid Dynamics Conference
, American Institute of Aeronautics and Astronautics, Orlando, FL, pp. 6–9.
17.
Keshmiri
,
A.
,
Uribe
,
J.
, and
Shokri
,
N.
,
2015
, “
Benchmarking of Three Different CFD Codes in Simulating Natural, Forced and Mixed Convection Flows
,”
Int. J. Comput. Method.
,
67
(
12
), pp.
1324
1351
.
18.
Wilcox
,
D. C.
,
1986
, “
Multiscale Model for Turbulent Flows
,”
AIAA J.
,
26
(
1
), pp.
1311
1325
.
19.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Eng.
,
3
(
2
), pp.
269
289
.
20.
Härtel
,
C.
, and
Kleister
,
L.
,
1998
, “
Analysis and Modeling of Scale Motions in Near-Wall Turbulence
,”
J. Fluid Mech.
,
365
, pp.
327
352
.
21.
White
,
F. M.
,
2005
,
Viscous Fluid Flow
,
McGraw-Hill Companies
,
New York
.
22.
Kármán
,
Th.
,
1931
, “
Mechanical Similitude and Turbulence
,” Technical Memorandum,
NACA, Report No. 611
.
23.
Ould-Rouiss
,
M.
,
Redjem-Saad
,
L.
, and
Lauriat
,
G.
,
2009
, “
Direct Numerical Simulation of Turbulent Heat Transfer in Annuli: Effect of Heat Flux Ratio
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
579
589
.
24.
Rehme
,
K.
,
1975
, “
Turbulence Measurements in Smooth Concentric Annuli With Small Radius Ratios
,”
J. Fluid Mech.
,
72
(
1
), pp.
189
206
.
25.
Kolmogorov
,
A. N.
,
1962
, “
A Refinement of Previous Hypotheses Concerning the Local Structure of Turbulence in a Viscous Incompressible Fluid at High Reynolds Number
,”
J. Fluid Mech.
,
13
(01), pp.
82
85
.
26.
Pope
,
S. B.
,
2000
,
Turbulent Flow
,
Cambridge University Press
,
Cambridge, UK
.
27.
Härtel
,
C.
,
Kleiser
,
L.
,
Unger
,
F.
, and
Friedrich
,
R.
,
1994
, “
Subgrid-Scale Energy Transfer in the Near-Wall Region of Turbulent Flows
,”
Phys. Fluids
,
6
(
9
), pp.
3130
3143
.
28.
Ptasinski
,
P. K.
,
Boersma
,
B. J.
,
Nieuwstadt
,
F. T. M.
,
Hulsen
,
M. A.
,
VandenBrule
,
B. H. A. A.
, and
Hunt
,
J. C. R.
,
2003
, “
Turbulent Channel Flow Near Maximum Drag Reduction: Simulations, Experiments and Mechanisms
,”
J. Fluid Mech.
,
490
, pp.
251
291
.
29.
Antonia
,
R. A.
,
Teitel
,
M.
,
Kim
,
J.
, and
Browne
,
L. W. B.
,
1992
, “
Low-Reynolds-Number Effects in a Fully Developed Turbulent Channel Flow
,”
J. Fluid Mech.
,
236
, pp.
579
605
.
You do not currently have access to this content.