This study investigates the aerodynamic performance of a low-pressure turbine, namely the T106C, by large eddy simulation (LES) and coarse grid direct numerical simulation (CDNS) at a Reynolds number of 100,000. Existing experimental data were used to validate the computational fluid dynamics (CFD) tool. The effects of subgrid scale (SGS) models, mesh densities, computational domains and boundary conditions on the CFD predictions are studied. On the blade suction surface, a separation zone starts at a location of about 55% along the suction surface. The prediction of flow separation on the turbine blade is always found to be difficult and is one of the focuses of this work. The ability of Smagorinsky and wall-adapting local eddy viscosity (WALE) model in predicting the flow separation is compared. WALE model produces better predictions than the Smagorinsky model. CDNS produces very similar predictions to WALE model. With a finer mesh, the difference due to SGS models becomes smaller. The size of the computational domain is also important. At blade midspan, three-dimensional (3D) features of the separated flow have an effect on the downstream flows, especially for the area near the reattachment. By further considering the effects of endwall secondary flows, a better prediction of the flow separation near the blade midspan can be achieved. The effect of the endwall secondary flow on the blade suction surface separation at the midspan is explained with the analytical method based on the Biot–Savart Law.

References

1.
Breuer
,
M.
,
Jovičić
,
N.
, and
Mazaev
,
K.
,
2003
, “
Comparison of DES, RANS and LES for the Separated Flow Around a Flat Plate at High Incidence
,”
Int. J. Numer. Methods Fluids
,
41
(
4
), pp.
357
388
.
2.
Spalart
,
P. R.
,
2009
, “
Detached-Eddy Simulation
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
181
202
.
3.
Nishino
,
T.
,
Roberts
,
G. T.
, and
Zhang
,
X.
,
2008
, “
Unsteady RANS and Detached-Eddy Simulations of Flow Around a Circular Cylinder in Ground Effect
,”
J. Fluids Struct.
,
24
(
1
), pp.
18
33
.
4.
Benyahia
,
A.
,
Castillon
,
L.
, and
Houdeville
,
R.
,
2011
, “
Prediction of Separation-Induced Transition on High Lift Low Pressure Turbine Blade
,”
ASME
Paper No. GT2011-45566.
5.
Pacciani
,
R.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2010
, “
A CFD Study of Low Reynolds Number Flow in High Lift Cascades
,”
ASME
Paper No. GT2010-23300.
6.
Pacciani
,
R.
,
Marconcini
,
M.
,
Fadai-Ghotbi
,
A.
,
Lardeau
,
S.
, and
Leschziner
,
M. A.
,
2011
, “
Calculation of High-Lift Cascades in Low Pressure Turbine Conditions Using a Three-Equation Model
,”
ASME J. Turbomach.
,
133
(
3
), p.
031016
.
7.
Pacciani
,
R.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2014
, “
Predicting High-Lift Low-Pressure Turbine Cascades Flow Using Transition-Sensitive Turbulence Closures
,”
ASME J. Turbomach.
,
136
(
5
), p.
051007
.
8.
Babajee
,
J.
, and
Arts
,
T.
,
2012
, “
Investigation of the Laminar Separation-Induced Transition With the γ-Reθt Transition Model on Low-Pressure Turbine Rotor Blades at Steady Conditions
,”
ASME
Paper No. GT2012-68687.
9.
Zhou
,
C.
,
Hodson
,
H.
, and
Himmel
,
C.
,
2014
, “
The Effects of Trailing Edge Thickness on the Losses of Ultrahigh Lift Low Pressure Turbine Blades
,”
ASME J. Turbomach.
,
136
(
8
), p.
081011
.
10.
Tyacke
,
J.
,
Tucker
,
P.
,
Jefferson-Loveday
,
R.
,
Vadlamani
,
N. R.
,
Watson
,
R.
,
Naqavi
,
I.
, and
Yang
,
X.
,
2013
, “
LES for Turbines: Methodologies, Cost and Future Outlooks
,”
ASME
Paper No. GT2013-94416.
11.
Yangwei
,
L.
,
Hao
,
Y.
,
Lipeng
,
L.
, and
Qiushi
,
L.
,
2017
, “
Investigation of Vortical Structures and Turbulence Characteristics in Corner Separation in a Linear Compressor Cascade Using DDES
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021107
.
12.
Michálek
,
J.
,
Monaldi
,
M.
, and
Arts
,
T.
,
2012
, “
Aerodynamic Performance of a Very High Lift Low Pressure Turbine Airfoil (T106C) at Low Reynolds and High Mach Number With Effect of Free Stream Turbulence Intensity
,”
ASME J. Turbomach.
,
134
(
6
), p.
061009
.
13.
Marty
,
J.
,
Lantos
,
N.
,
Michel
,
B.
, and
Bonneau
,
V.
,
2015
, “
LES and Hybrid RANS/LES Simulations of Turbomachinery Flows Using High Order Methods
,”
ASME
Paper No. GT2015-42134.
14.
Hillewaert
,
K.
,
de Wiart
,
C. C.
,
Verheylewegen
,
G.
, and
Arts
,
T.
,
2014
, “
Assessment of a High-Order Discontinuous Galerkin Method for the Direct Numerical Simulation of Transition at Low-Reynolds Number in the T106C High-Lift Low Pressure Turbine Cascade
,”
ASME
Paper No. GT2014-26739.
15.
Ghidoni
,
A.
,
Colombo
,
A.
,
Rebay
,
S.
, and
Bassi
,
F.
,
2013
, “
Simulation of the Transitional Flow in a Low Pressure Gas Turbine Cascade With a High-Order Discontinuous Galerkin Method
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071101
.
16.
Balzer
,
W.
, and
Fasel
,
H. F.
,
2013
, “
Direct Numerical Simulations of Laminar Separation Bubbles on a Curved Plate—Part 1: Simulation Setup and Uncontrolled Flow
,”
ASME
Paper No. GT2013-95277.
17.
Balzer
,
W.
, and
Fasel
,
H. F.
,
2013
, “
Direct Numerical Simulations of Laminar Separation Bubbles on a Curved Plate—Part 2: Flow Control Using Pulsed Vortex Generator Jets
,”
ASME
Paper No. GT2013-95278.
18.
Lee
,
C. B.
, and
Wu
,
J. Z.
,
2008
, “
Transition in Wall-Bounded Flows
,”
ASME Appl. Mech. Rev.
,
61
(
3
), p.
030802
.
19.
Zhang
,
X. F.
,
2006
, “
Separation and Transition Control on Ultra-High-Lift Low Pressure Turbine Blades in Unsteady Flow
,” Ph.D. dissertation, University of Cambridge, Cambridge, UK.
20.
Cui
,
J.
,
Rao
,
V. N.
, and
Tucker
,
P.
,
2016
, “
Numerical Investigation of Contrasting Flow Physics in Different Zones of a High-Lift Low-Pressure Turbine Blade
,”
ASME J. Turbomach.
,
138
(
1
), p.
011003
.
21.
Wu
,
X.
, and
Durbin
,
P. A.
,
2001
, “
Evidence of Longitudinal Vortices Evolved From Distorted Wakes in a Turbine Passage
,”
J. Fluid Mech.
,
446
, pp.
199
228
.https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/evidence-of-longitudinal-vortices-evolved-from-distorted-wakes-in-a-turbine-passage/FE484A0D212982AB5947D60DA428B3C4
22.
Michelassi
,
V.
,
Wissink
,
J.
, and
Rodi
,
W.
,
2002
, “
Analysis of DNS and LES of Flow in a Low Pressure Turbine Cascade With Incoming Wakes and Comparison With Experiments
,”
Flow, Turbul. Combust.
,
69
(
3–4
), pp.
295
329
.
23.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
71
98
.
24.
Meneveau
,
C.
, and
Katz
,
J.
,
2000
, “
Scale-Invariance and Turbulence Models for Large-Eddy Simulation
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
1
32
.
25.
Liu
,
Y.
,
Yu
,
X.
, and
Liu
,
B.
,
2008
, “
Turbulence Models Assessment for Large-Scale Tip Vortices in an Axial Compressor Rotor
,”
J. Propul. Power
,
24
(
1
), pp.
15
25
.
26.
Sohankar
,
A.
,
Davidson
,
L.
, and
Norberg
,
C.
,
2000
, “
Large Eddy Simulation of Flow Past a Square Cylinder: Comparison of Different Subgrid Scale Models
,”
ASME J. Fluids Eng.
,
122
(
1
), pp.
39
47
.
27.
Klostermeier
,
C.
,
2008
, “
Investigation Into the Capability of Large Eddy Simulation for Turbomachinery Design
,”
Ph.D. dissertation
, University of Cambridge, Cambridge, UK.https://www.repository.cam.ac.uk/handle/1810/252106
28.
Meyers
,
J.
, and
Sagaut
,
P.
,
2007
, “
Is Plane-Channel Flow a Friendly Case for the Testing of Large-Eddy Simulation Subgrid-Scale Models?
,”
Phys. Fluids
,
19
(
4
), p.
048105
.
29.
Kravchenko
,
A. G.
, and
Moin
,
P.
,
2000
, “
Numerical Studies of Flow Over a Circular Cylinder at ReD = 3900
,”
Phys. Fluids
,
12
(
2
), pp.
403
417
.
30.
Chen
,
S.
,
Chen
,
Y.
,
Xia
,
Z.
,
Qu
,
K.
,
Shi
,
Y.
,
Xiao
,
Z.
, and
Cai
,
J.
,
2013
, “
Constrained Large-Eddy Simulation and Detached Eddy Simulation of Flow Past a Commercial Aircraft at 14 Degrees Angle of Attack
,”
Sci. China Phys., Mech. Astron.
,
56
(
2
), pp.
270
276
.
31.
Cai
,
J.
, and
Chng
,
T. L.
,
2009
, “
On Vortex Shedding From Bluff Bodies With Base Cavities
,”
Phys. Fluids
,
21
(
3
), p.
034109
.
32.
Zha
,
G. C.
, and
Bilgen
,
E.
,
1993
, “
Numerical Solutions of Euler Equations by Using a New Flux Vector Splitting Scheme
,”
Int. J. Numer. Methods Fluids
,
17
(
2
), pp.
115
144
.
33.
Raverdy
,
B.
,
Mary
,
I.
,
Sagaut
,
P.
, and
Liamis
,
N.
,
2003
, “
High-Resolution Large-Eddy Simulation of Flow Around Low-Pressure Turbine Blade
,”
AIAA J.
,
41
(
3
), pp.
390
397
.
34.
Tyacke
,
J.
, and
Tucker
,
P. G.
,
2015
, “
Large Eddy Simulation of Turbine Internal Cooling Ducts
,”
Comput. Fluids
,
114
, pp.
130
140
.
35.
Cui
,
J.
, and
Tucker
,
P. G.
,
2017
, “
Numerical Study of Purge and Secondary Flows in a Low Pressure Turbine
,”
ASME J. Turbomach.
,
139
(
2
), p.
021007
.
36.
Xu
,
C. Y.
,
Chen
,
L. W.
, and
Lu
,
X. Y.
,
2010
, “
Large-Eddy Simulation of the Compressible Flow Past a Wavy Cylinder
,”
J. Fluid Mech.
,
665
, pp.
238
273
.
37.
Yoon
,
S.
, and
Jameson
,
A.
,
1988
, “
Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and Navier–Stokes Equations
,”
AIAA J.
,
26
(
9
), pp.
1025
1026
.
38.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations—I: The Basic Experiment
,”
Monthly Weather Rev.
,
91
(
3
), pp.
99
164
.
39.
Lilly
,
D. K.
,
1967
, “
The Representation of Small Scale Turbulence in Numerical Simulation Experiments
,”
IBM Scientific Computational Symposium on Environmental Science
, Yorktown Heights, NY, pp.
195
210
.
40.
Rogallo
,
R. S.
, and
Moin
,
P.
,
1984
, “
Numerical Simulation of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
16
(
1
), pp.
99
137
.
41.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.
42.
Shah
,
K. B.
, and
Ferziger
,
J. H.
,
1995
, “
A New Non-Eddy Viscosity Subgrid-Scale Model and Its Application to Channel Flow
,” Center for Turbulence Research, Stanford University, Stanford, CA, Report No.
NASA-CR-200667
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19960022300.pdf
43.
Akselvoll
,
K.
, and
Moin
,
P.
,
2014
, “
Large Eddy Simulation of a Backward Facing Step Flow
,”
Eng. Turbul. Modell. Exp.
,
2
, pp.
303
313
.http://folk.ntnu.no/ivarse/art/MEKIT09_Panjwani_etal_final.pdf
44.
Georgiadis
,
N. J.
,
Rizzetta
,
D. P.
, and
Fureby
,
C.
,
2010
, “
Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research
,”
AIAA J.
,
48
(
8
), pp.
1772
1784
.
45.
Hunt
,
J. C. R.
,
Wray
,
A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” Center for Turbulence Research, Stanford University, Stanford, CA, Report No.
CTR-S88
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890015184.pdf
46.
Tucker
,
P.
,
Eastwood
,
S.
,
Klostermeier
,
C.
,
Jefferson-Loveday
,
R.
,
Tyacke
,
J.
, and
Liu
,
Y.
,
2010
, “
Hybrid LES Approach for Practical Turbomachinery Flows: Part 1—Hierarchy and Example Simulations
,”
ASME
Paper No. GT2010-23431.
47.
Wu
,
J. Z.
,
Ma
,
H. Y.
, and
Zhou
,
M. D.
,
2007
,
Vorticity and Vortex Dynamics
,
Springer
,
Berlin
.
You do not currently have access to this content.