This investigation demonstrates microfluidic synthesis of monodisperse hydrogel beads with controllable electromechanical properties. Hydrogel beads were synthesized using aqueous monomer solutions containing difunctional macromer, ionic liquid monomer, and photoinitiator. Electromechanical properties of these beads were measured at compression ratios up to 20% to examine their potential use in vibrational energy harvesters. Bead stiffness decreased dramatically as water content increased from 19% to 60%. As water content and compression ratio increased, electrical permittivity of beads increased, while resistivity decreased. As ionic liquid monomer concentration increased from 0% to 4%, relative permittivity increased by 30–45% and resistivity decreased by 70–80%.

References

1.
Chu
,
S.
, and
Majumdar
,
A.
,
2012
, “
Opportunities and Challenges for a Sustainable Energy Future
,”
Nature
,
488
(
7411
), pp.
294
303
.
2.
Najafi
,
M. R.
,
Zwiers
,
F. W.
, and
Gillett
,
N. P.
,
2015
, “
Attribution of Arctic Temperature Change to Greenhouse-Gas and Aerosol Influences
,”
Nat. Clim. Change
,
5
(
3
), pp.
246
249
.
3.
Solomon
,
S.
,
Plattner
,
G.-K.
,
Knutti
,
R.
, and
Friedlingstein
,
P.
,
2009
, “
Irreversible Climate Change Due to Carbon Dioxide Emissions
,”
Proc. Natl. Acad. Sci. U. S. A
,
106
(
6
), pp.
1704
1709
.
4.
Silva
,
R. A.
,
West
,
J. J.
,
Zhang
,
Y.
,
Anenberg
,
S. C.
,
Lamarque
,
J.-F.
,
Shindell
,
D. T.
,
Collins
,
W. J.
,
Dalsoren
,
S.
,
Faluvegi
,
G.
,
Folberth
,
G.
,
Horowitz
,
L. W.
,
Nagashima
,
T.
,
Naik
,
V.
,
Rumbold
,
S.
,
Skeie
,
R.
,
Sudo
,
K.
,
Takemura
,
T.
,
Bergmann
,
D.
,
Cameron-Smith
,
P.
,
Cionni
,
I.
,
Doherty
,
R. M.
,
Eyring
,
V.
,
Josse
,
B.
,
MacKenzie
,
I. A.
,
Plummer
,
D.
,
Righi
,
M.
,
Stevenson
,
D. S.
,
Strode
,
S.
,
Szopa
,
S.
, and
Zeng
,
G.
,
2013
, “
Global Premature Mortality Due to Anthropogenic Outdoor Air Pollution and the Contribution of Past Climate Change
,”
Environ. Res. Lett.
,
8
(
3
), p.
034005
.
5.
Bogue
,
R.
,
2015
, “
Energy Harvesting: A Review of Recent Developments
,”
Sens. Rev.
,
31
(
1
), pp.
1
5
.
6.
Verbelen
,
Y.
,
Braeken
,
A.
, and
Touhafi
,
A.
,
2014
, “
Towards a Complementary Balanced Energy Harvesting Solution for Low Power Embedded Systems
,”
Microsyst. Technol.
,
20
(
4–5
), pp.
1007
1021
.
7.
Gorlatova
,
M.
,
Sarik
,
J.
,
Grebla
,
G.
,
Cong
,
M.
,
Kymissis
,
I.
, and
Zussman
,
G.
,
2015
, “
Movers and Shakers: Kinetic Energy Harvesting for the Internet of Things
,”
IEEE J. Sel. Areas Commun.
,
33
(
8
), pp.
1624
1639
.
8.
Gupta
,
R. K.
,
Shi
,
Q.
,
Dhakar
,
L.
,
Wang
,
T.
,
Heng
,
C. H.
, and
Lee
,
C.
,
2017
, “
Broadband Energy Harvester Using Non-Linear Polymer Spring and Electromagnetic/Triboelectric Hybrid Mechanism
,”
Sci. Rep.
,
7
, pp.
1
13
.
9.
Jabbari
,
M.
,
Ghayour
,
M.
, and
Mirdamadi
,
H. R.
,
2017
, “
Energy Harvesting of a Multilayer Piezoelectric Beam in Resonance and Off-Resonance Cases
,”
ASME J. Eng. Mater. Technol.
,
139
(
3
), p. 031008.
10.
Wang
,
Y.
, and
Sun
,
L. Z.
,
2017
, “
Synthesis and Characterization of Dielectric Elastomer Nanocomposites Filled With Multiwalled Carbon Nanotubes
,”
ASME J. Eng. Mater. Technol.
,
139
(
2
), p.
021018
.
11.
Cooley
,
C. G.
, and
Chai
,
T.
,
2017
, “
Energy Harvesting From the Vibrations of Rotating Systems
,”
ASME J. Vib. Acoust.
,
140
(
2
), p. 021010.
12.
Fang
,
Z.-W.
,
Zhang
,
Y.-W.
,
Li
,
X.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2017
, “
Complexification-Averaging Analysis on a Giant Magnetostrictive Harvester Integrated With a Nonlinear Energy Sink
,”
ASME J. Vib. Acoust.
,
140
(
2
), p. 021009.
13.
Chen
,
S.
,
Peng
,
Y.
,
Wu
,
Q.
,
Chang
,
A.
,
Qu
,
A.
,
Shen
,
J.
,
Xie
,
J.
,
Farooqi
,
Z. H.
, and
Wu
,
W.
,
2016
, “
Synthesis and Characterization of Responsive Poly(Anionic Liquid) Microgels
,”
Polym. Chem.
,
7
(
34
), pp.
5463
5473
.
14.
Krupenkin
,
T.
, and
Taylor
,
J. A.
,
2011
, “
Reverse Electrowetting as a New Approach to High-Power Energy Harvesting
,”
Nat. Commun.
,
2
, p.
448
.
15.
Yang
,
Z.
,
Halvorsen
,
E.
, and
Dong
,
T.
,
2014
, “
Electrostatic Energy Harvester Employing Conductive Droplet and Thin-Film Electret
,”
J. Microelectromech. Syst.
,
23
(
2
), pp.
315
323
.
16.
Schertzer
,
M. J.
,
2017
, “
Analytical Model of Droplet Based Electrostatic Energy Harvester Performance
,”
Microsyst. Technol.
,
23
(
8
), pp.
3141
3148
.
17.
Yang
,
Z.
,
Halvorsen
,
E.
, and
Dong
,
T.
,
2013
, “
Capacitance Variation in Electrostatic Energy Harvester With Conductive Droplet Moving on Electret Film
,”
J. Phys. Conf. Ser.
,
476
, p.
012094
.
18.
Miljkovic
,
N.
,
Preston
,
D. J.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2014
, “
Jumping-Droplet Electrostatic Energy Harvesting
,”
Appl. Phys. Lett.
,
105
(
1
), p.
013111
.
19.
Kong
,
W.
,
Cao
,
P.
,
He
,
X.
,
Yu
,
L.
,
Ma
,
X.
,
He
,
Y.
,
Lu
,
L.
,
Zhang
,
X.
, and
Deng
,
Y.
,
2014
, “
Ionic Liquid Based Vibrational Energy Harvester by Periodically Squeezing the Liquid Bridge
,”
RSC Adv.
,
4
(
37
), p.
19356
.
20.
Helseth
,
L. E.
, and
Guo
,
X. D.
,
2015
, “
Contact Electrification and Energy Harvesting Using Periodically Contacted and Squeezed Water Droplets
,”
Langmuir
,
31
(
10
), pp.
3269
3276
.
21.
Hsu
,
T. H.
,
Manakasettharn
,
S.
,
Taylor
,
J. A.
, and
Krupenkin
,
T.
,
2015
, “
Bubbler: A Novel Ultra-High Power Density Energy Harvesting Method Based on Reverse Electrowetting
,”
Sci. Rep.
,
5
(
1
), p. 16537.
22.
Yamada
,
S.
,
Mitsuya
,
H.
, and
Fujita
,
H.
,
2014
, “
Vibrational Energy Harvester Based on Electrical Double Layer of Ionic Liquid
,”
J. Phys. Conf. Ser.
,
557
(1), p. 012013.
23.
Jiang
,
Q.
,
Barkan
,
H.
,
Menner
,
A.
, and
Bismarck
,
A.
,
2017
, “
Micropatterned, Macroporous Polymer Springs for Capacitive Energy Harvesters
,”
Polymer
,
126
, pp.
419
424
.
24.
Helseth
,
L. E.
, and
Guo
,
X. D.
,
2016
, “
Hydrophobic Polymer Covered by a Grating Electrode for Converting the Mechanical Energy of Water Droplets Into Electrical Energy
,”
Smart Mater. Struct.
,
25
(
4
), p.
045007
.
25.
Lin
,
T.
,
Ramadurgam
,
S.
, and
Yang
,
C.
,
2017
, “
Design of Contact Electrodes for Semiconductor Nanowire Solar Energy Harvesting Devices
,”
Nano Lett.
,
17
(
4
), pp.
2118
2125
.
26.
Alan Wei
,
Z.
, and
Charlie Zheng
,
Z.
,
2017
, “
Fluid–Structure Interaction Simulation on Energy Harvesting From Vortical Flows by a Passive Heaving Foil
,”
ASME J. Fluids Eng.
,
140
(
1
), p. 011105.
27.
Naccache
,
G.
, and
Paraschivoiu
,
M.
,
2017
, “
Development of the Dual Vertical Axis Wind Turbine Using Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
139
(
12
), p. 121105.
28.
Shih, S. C., Barbulovic-Nad, I., Yang, X., Fobel, R., and Wheeler, A. R., 2013, “
Digital Microfluidics With Impedance Sensing for Integrated Cell Culture and Analysis
,”
Biosens. Bioelectron.
,
42
, pp. 314–320.
29.
Reeves
,
C.
,
Garvey
,
S.
,
Menezes
,
P.
,
Dietz
,
M.
,
Jen
,
T.-C.
, and
Lovell
,
M.
,
2012
, “
Tribological Performance of Environmentally Friendly Ionic Liquid Lubricants
,”
ASME
Paper No. IJTC2012-61180.
30.
Jiménez
,
A. E.
,
Bermúdez
,
M. D.
, and
Iglesias
,
P.
,
2009
, “
Lubrication of Inconel 600 With Ionic Liquids at High Temperature
,”
Tribol. Int.
,
42
(
11–12
), pp.
1744
1751
.
31.
Yao
,
C.
,
Li
,
T.
,
Twu
,
P.
,
Pitner
,
W. R.
, and
Anderson
,
J. L.
,
2011
, “
Selective Extraction of Emerging Contaminants From Water Samples by Dispersive Liquid-Liquid Microextraction Using Functionalized Ionic Liquids
,”
J. Chromatogr. A
,
1218
(
12
), pp.
1556
1566
.
32.
Dharaskar
,
S. A.
,
Wasewar
,
K. L.
,
Varma
,
M. N.
, and
Shende
,
D. Z.
,
2013
, “
Extractive Deep Desulfurization of Liquid Fuels Using Lewis-Based Ionic Liquids
,”
J. Energy
,
2013
, p. 581723.
33.
Jacquemin
,
J.
,
Feder-Kubis
,
J.
,
Zorębski
,
M.
,
Grzybowska
,
K.
,
Chorążewski
,
M.
,
Hensel-Bielówka
,
S.
,
Zorębski
,
E.
,
Paluch
,
M.
, and
Dzida
,
M.
,
2014
, “
Structure and Thermal Properties of Salicylate-Based-Protic Ionic Liquids as New Heat Storage Media. COSMO-RS Structure Characterization and Modeling of Heat Capacities
,”
Phys. Chem. Chem. Phys.
,
16
(
8
), pp.
3549
3557
.
34.
Du
,
Z.
,
Li
,
Z.
, and
Deng
,
Y.
,
2005
, “
Synthesis and Characterization of Sulfonyl—Functionalized Ionic Liquids
,”
Synth. Commun.
,
35
(
10
), pp.
1343
1349
.
35.
Jiménez
,
A. E.
,
Bermúdez
,
M. D.
,
Iglesias
,
P.
,
Carrión
,
F. J.
, and
Martínez-Nicolás
,
G.
,
2006
, “
1-N-Alkyl-3-Methylimidazolium Ionic Liquids as Neat Lubricants and Lubricant Additives in Steel-Aluminium Contacts
,”
Wear
,
260
(
7–8
), pp.
766
782
.
36.
Song
,
Z.
,
Liang
,
Y.
,
Fan
,
M.
,
Zhou
,
F.
, and
Liu
,
W.
,
2014
, “
Ionic Liquids From Amino Acids: Fully Green Fluid Lubricants for Various Surface Contacts
,”
RSC Adv.
,
4
(
37
), pp.
19396
19402
.
37.
Matczak
,
L.
,
Johanning
,
C.
,
Gil
,
E.
,
Smith
,
T. W.
,
Schertzer
,
M. J.
, and
Iglesias Victoria
,
P.
,
2018
, “
Effect of Cation Nature on the Lubricating and Physicochemical Properties of Three Ionic Liquids
,”
Tribol. Int.
,
124
(
22–23
), pp.
23
33
.
38.
Zhao
,
J.
,
Shen
,
X.
,
Yan
,
F.
,
Qiu
,
L.
,
Lee
,
S.
, and
Sun
,
B.
,
2011
, “
Solvent-Free Ionic Liquid/Poly(Ionic Liquid) Electrolytes for Quasi-Solid-State Dye-Sensitized Solar Cells
,”
J. Mater. Chem.
,
21
(
20
), pp.
7326
7330
.
39.
Su’ait
,
M. S.
,
Rahman
,
M. Y. A.
, and
Ahmad
,
A.
,
2015
, “
Review on Polymer Electrolyte in Dye-Sensitized Solar Cells (DSSCs)
,”
Sol. Energy
,
115
, pp.
452
470
.
40.
Sahiner
,
N.
, and
Yasar
,
A. O.
,
2016
, “
Imidazolium Based Polymeric Ionic Liquid Microgels as an Alternative Catalyst to Metal Catalysts for H2 Generation From Methanolysis of NaBH4
,”
Fuel Process. Technol.
,
152
, pp.
316
324
.
41.
Qian
,
W.
,
Texter
,
J.
, and
Yan
,
F.
,
2017
, “
Frontiers in Poly(Ionic Liquid)s: Syntheses and Applications
,”
Chem. Soc. Rev.
,
46
(
4
), pp.
1124
1159
.
42.
Rahman
,
M. T.
,
Barikbin
,
Z.
,
Badruddoza
,
A. Z. M.
,
Doyle
,
P. S.
, and
Khan
,
S. A.
,
2013
, “
Monodisperse Polymeric Ionic Liquid Microgel Beads With Multiple Chemically Switchable Functionalities
,”
Langmuir
,
29
(
30
), pp.
9535
9543
.
43.
Tiihonen
,
J.
,
Markkanen
,
I.
,
Laatikainen
,
M.
, and
Paatero
,
E.
,
2001
, “
Elasticity of Ion-Exchange Resin Beads in Solvent Mixtures
,”
J. Appl. Polym. Sci.
,
82
(
5
), pp.
1256
1264
.
44.
Tan
,
J.
,
Xu
,
J. H.
,
Li
,
S. W.
, and
Luo
,
G. S.
,
2008
, “
Drop Dispenser in a Cross-Junction Microfluidic Device: Scaling and Mechanism of Break-Up
,”
Chem. Eng. J.
,
136
(
2–3
), pp.
306
311
.
45.
Ngo
,
I.-L.
,
Woo Joo
,
S.
, and
Byon
,
C.
,
2016
, “
Effects of Junction Angle and Viscosity Ratio on Droplet Formation in Microfluidic Cross-Junction
,”
ASME J. Fluids Eng.
,
138
(
5
), p. 051202.
You do not currently have access to this content.