This study involves exploring a new design of an internally cooled/heated desiccant contactor by using a new ionic liquid (IL) solution as the sorptive solution. In order to optimize its operative performance, a semitheoretical model based on the principle of minimum energy is developed to predict the film rupture and wetting ability of the IL solution over a comprehensive range of IL mass fraction and flow rates. A first experimental validation of the fundamental equations of the theoretical model is presented and used as a reference to minimize deviations between predicted results and measured data by calibrating dedicated characteristic coefficients. The noteworthy quantitative and qualitative agreement in the whole range of IL mass fractions and flow rates is promising for contributing to the design of optimized system configurations and control strategies.

References

1.
Bejan
,
A.
,
2006
,
Advanced Engineering Thermodynamics
, 3rd ed.,
Wiley
, Hoboken, NJ.
2.
Helmholtz
,
H.
,
1869/1871
, “
Zur Theorie der stationären Ströme in reibenden Flüssigkeiten, Verhandlungen des naturhistorisch-medizinischen Vereins zu Heidelberg
,”
Wissenschaftliche Abhandlungen
,
H.
Helmholtz
, ed., Vol. 1,
Johann Ambrosius Barth
,
Leipzig, Germany
,
1
, pp.
223
230
.
3.
Hamilton
,
W. R.
,
1835
, “
Second Essay on a General Method in Dynamics
,”
Philos. Trans. R. Soc., Part I
,
125
, pp.
95
144
.
4.
Hamilton
,
W. R.
,
1834
, “
On a General Method in Dynamics
,”
Philos. Trans. R. Soc., Part II
,
124
, pp.
247
308
.
5.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes—Part I
,”
Phys. Rev.
,
37
(
4
), pp.
405
426
.
6.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes—Part II
,”
Phys. Rev.
,
38
(
12
), pp.
2265
2279
.
7.
Ziman
,
J. M.
,
1956
, “
The General Variational Principle of Transport Theory
,”
Can. J. Phys.
,
34
(
12A
), pp.
1256
1273
.
8.
Prigogine
,
I.
,
1961
, “
Introduction to Thermodynamics of Irreversible Processes
,”
Interscience Publishers
, 2nd ed.,
Wiley
, New York.
9.
Bejan
,
A.
, and
Lorente
,
S.
,
2008
, “
Design With Constructal Theory
,” Wiley, Hoboken, NJ.
10.
Kiss
,
E.
,
1994
, “
On the Validity of the Principle of Minimum Entropy Production
,”
Period. Polytech. Ser. Chem. Eng.
,
38
(
3–4
), pp.
183
197
.
11.
Reis
,
A. H.
,
2014
, “
Use and Validity of Principles of Extremum of Entropy Production in the Study of Complex Systems
,”
Ann. Phys.
,
346
, pp.
22
27
.
12.
Grandy
,
W. T.
,
2008
,
Entropy and the Time Evolution of Macroscopic Systems
,
Oxford University Press
, New York.
13.
Zivi
,
S. M.
,
1964
, “
Estimation of Steady-State Steam Void-Fraction by Means of the Principle of Minimum Entropy Production
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
247
251
.
14.
Giannetti
,
N.
,
Kunita
,
D.
,
Yamaguchi
,
S.
, and
Saito
,
K.
,
2018
, “
Annular Flow Stability Within Small-Sized Channels
,”
Int. J. Heat Mass Transfer
,
116
, pp.
1153
1162
.
15.
Brauner
,
N.
,
Rovinsky
,
J.
, and
Maron
,
D. M.
,
1996
, “
Determination of the Interface Curvature in Stratified Two-Phase Systems by Energy Considerations
,”
Int. J. Multiphase Flow
,
22
(
6
), pp.
1167
1185
.
16.
Chakrabarti
,
D. P.
,
Das
,
G.
, and
Ray
,
S.
,
2005
, “
Pressure Drop in Liquid-Liquid Two Phase Horizontal Flow: Experiment and Prediction
,”
Chem. Eng. Technol.
,
28
(
9
), pp.
1003
1009
.
17.
Paulus
,
D. M.
, and
Gaggioli
,
R. A.
,
2004
, “
Some Observations of Entropy Extrema in Fluid Flow
,”
Energy
,
29
(
12–15
), pp.
2487
2500
.
18.
Dabirian
,
R.
,
Thompson
,
L.
,
Mohan
,
R. S.
,
Shoham
,
O.
, and
Avila
,
C.
,
2013
, “
Prediction of Two-Phase Flow Splitting in Looped Lines Based on Energy Minimization
,” SPE Annual Technical Conference and Exhibition, Paper No. SPE-166197-MS, pp.
1
11
.
19.
Soto Francés
,
V. M.
, and
Pinazo Ojer
,
J. M.
,
2000
, “
Experimental Study About Heat and Mass Transfer During Absorption of Water by an Aqueous Lithium Bromide Solution
,”
International ASME-ZSITS International Thermal Science Seminar, Bled, Slovenia
, June 11–14, pp.
535
542
.
20.
Ren
,
C. Q.
,
Tu
,
M.
, and
Wang
,
H. H.
,
2007
, “
An Analytical Model for Heat and Mass Transfer Processes in Internally Cooled or Heated Liquid Desiccant–Air Contact Units
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3545
3555
.
21.
Howell
,
J. R.
,
1987
, “
Design of Liquid Desiccant Dehumidification and Cooling Systems
,”
Solar Energy Utilization
(NATO ASI, Series), Vol. 129,
Springer
,
Dordrecht, The Netherlands
, pp.
374
386
.
22.
Park
,
M. S.
,
Howell
,
J. R.
,
Vliet
,
G. C.
, and
Peterson
,
J.
,
1994
, “
Numerical and Experimental Results for Coupled Heat and Mass Transfer Between a Desiccant Film and Air in Cross-Flow
,”
Int. J. Heat Mass Transfer
,
37
(
Suppl. 1
), pp.
395
402
.
23.
Kessling
,
W.
,
Laevemann
,
E.
, and
Kapfhammer
,
C.
,
1998
, “
Energy Storage for Desiccant Cooling Systems Component Development
,”
Sol. Energy
,
64
(
4–6
), pp.
209
221
.
24.
Pietruschka
,
D.
,
Eicker
,
U.
,
Huber
,
M.
, and
Schumacher
,
J.
,
2006
, “
Experimental Performance Analysis and Modelling of Liquid Desiccant Cooling Systems for Air Conditioning in Residential Buildings
,”
Int. J. Refrig.
,
29
(
1
), pp.
110
124
.
25.
Maron
,
D. M.
,
Ingel
,
G.
, and
Brauner
,
N.
,
1982
, “
Wettability and Break-Up of Thin Films on Inclined Surfaces With Continuous and Intermittent Feed
,”
Desalination
,
42
(
1
), pp.
87
96
.
26.
Brauner
,
N.
,
Maron
,
D. M.
, and
Harel
,
Z.
,
1985
, “
Wettability, Rewettability and Breakdown of Thin Films of Aqueous Solutions
,”
Desalination
,
52
(
3
), pp.
295
307
.
27.
Miyara
,
A.
,
2000
, “
Numerical Simulation of Wavy Liquid Film Flowing Down on a Vertical Wall and an Inclined Wall
,”
Int. J. Therm. Sci.
,
39
(
9–11
), pp.
1015
1027
.
28.
Zhang
,
F.
,
Tang
,
D. L.
,
Geng
,
J.
,
Wang
,
Z. X.
, and
Zhang
,
Z. B.
,
2008
, “
Study on the Temperature Distribution of Heated Falling Liquid Films
,”
Phys. D
,
237
(
7
), pp.
867
872
.
29.
Morison
,
K. R.
,
Worth
,
Q. A. G.
, and
O'dea
,
N. P.
,
2006
, “
Minimum Wetting and Distribution Rates in Falling Film Evaporators
,”
Food Bioprod. Process.
,
84
(
4
), pp.
302
310
.
30.
Mesquita
,
L. C. S.
,
Harrison
,
S. J.
, and
Thomey
,
D.
,
2006
, “
Modeling of Heat and Mass Transfer in Parallel Plate Liquid-Desiccant Dehumidifiers
,”
Sol. Energy
,
80
(
11
), pp.
1475
1482
.
31.
Qi
,
R.
,
Lu
,
L.
,
Yang
,
H.
, and
Qin
,
F.
,
2013
, “
Investigation on Wetted Area and Film Thickness for Falling Film Liquid Desiccant Regeneration System
,”
Appl. Energy
,
112
, pp.
93
101
.
32.
Soto Francés
,
V. M.
, and
Pinazo Ojer
,
J. M.
,
2003
, “
Validation of a Model for the Absorption Process of H2O(Vap) by a LiBr(Aq) in a Horizontal Tube Bundle Using a Multi-Factorial Analysis
,”
Int. J. Heat Mass Transfer
,
46
(
17
), pp.
3299
3312
.
33.
Giannetti
,
N.
,
Rocchetti
,
A.
,
Saito
,
K.
, and
Yamaguchi
,
S.
,
2016
, “
Analytical Description of Falling Film Absorption
,”
Eighth Asian Conference on Refrigeration and Air Conditioning
, Taipei, Taiwan, May 15–17, p. 4.
34.
Giannetti
,
N.
,
Rocchetti
,
A.
,
Yamaguchi
,
S.
, and
Saito
,
K.
,
2017
, “
Analytical Solution of Film Mass-Transfer on a Partially Wetted Absorber Tube
,”
Int. J. Therm. Sci.
,
118
, pp.
176
186
.
35.
Giannetti
,
N.
,
Rocchetti
,
A.
,
Yamaguchi
,
S.
, and
Saito
,
K.
,
2018
, “
Heat and Mass Transfer Coefficients of Falling-Film Absorption on a Partially Wetted Horizontal Tube
,”
Int. J. Therm. Sci.
,
126
, pp.
56
66
.
36.
Giannetti
,
N.
,
Moriwaki
,
R.
,
Yamaguchi
,
S.
, and
Saito
,
K.
,
2018
, “
Development and Validation of an Analytical Formulation of the Nusselt and Sherwood Numbers on a Partially Wetted Absorber Tube
,”
Sci. Technol. Built Environ.
, (in press).
37.
Giannetti
,
N.
,
Yamaguchi
,
S.
, and
Saito
,
K.
,
2016
, “
Wetting Behaviour of a Liquid Film on an Internally-Cooled Desiccant Contactor
,”
Int. J. Heat Mass Transfer
,
101
, pp.
958
969
.
38.
Yamaguchi
,
S.
,
Jeong
,
J.
,
Saito
,
K.
,
Miyauchi
,
H.
, and
Harada
,
M.
,
2011
, “
Hybrid Liquid Desiccant Air-Conditioning System: Experiments and Simulations
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3741
3747
.
39.
Giannetti
,
N.
,
Rocchetti
,
A.
,
Saito
,
K.
, and
Yamaguchi
,
S.
,
2015
, “
Entropy Parameters for Desiccant Wheel Design
,”
Appl. Therm. Eng.
,
75
, pp.
826
838
.
40.
Varela
,
R. J.
,
Giannetti
,
N.
,
Yamaguchi
,
S.
,
Saito
,
K.
,
Wang
,
X. M.
, and
Nakayama
,
H.
,
2018
, “
Experimental Investigation of the Wetting Characteristics of an Aqueous Ionic Liquid Solution on an Aluminum Fin-Tube Substrate
,”
Int. J. Refrig.
,
88
, pp.
472
482
.
41.
Andberg
,
J. W.
, and
Vliet
,
G. C.
,
1987
, “
A Simplified Model for Absorption of Vapors Into Liquid Films Flowing Over Cooled Horizontal Tubes
,”
ASHRAE Trans.
,
93
, pp.
2454
2466
.
42.
Hobler
,
T.
, and
Czajka
,
J.
,
1964
, “
Minimal Surface Wetting
,”
Chem. Stosow.
,
2
(
B
), p.
145
(in Polish).
43.
Mikielewicz
,
J.
, and
Moszynski
,
J. R.
,
1976
, “
Minimum Thickness of a Liquid Film Flowing Vertically Down a Solid Surface
,”
Int. J. Heat Mass Transfer
,
19
(
7
), pp.
771
776
.
44.
Giannetti
,
N.
,
Yamaguchi
,
S.
, and
Saito
,
K.
,
2018
, “
Numerical Simulation of Marangoni Convection Within Absorptive Aqueous Li-Br
,”
Int. J. Refrig.
, (in press)
45.
Shimony
,
A.
,
Malamud
,
G.
, and
Shvarts
,
D.
,
2017
, “
Density Ratio and Entrainment Effects on Asymptotic Rayleigh–Taylor Instability
,”
ASME J. Fluids Eng.
,
140
(
5
), p.
050906
.
46.
Roy
,
S.
,
Mandal
,
L. K.
,
Khan
,
M.
, and
Gupta
,
M. R.
,
2014
, “
Combined Effect of Viscosity, Surface Tension and Compressibility on Rayleigh-Taylor Bubble Growth Between Two Fluids
,”
ASME J. Fluids Eng.
,
136
(
9
), p.
091101
.
47.
Dokowicz
,
M.
, and
Nowicki
,
W.
,
2017
, “
Morphological Hysteresis of Droplets Wetting a Series of Triangular Grooves
,”
Int. J. Heat Mass Transfer
,
115
(
B
), pp.
131
137
.
48.
Roques
,
J. F.
,
Dupont
,
V.
, and
Thome
,
J. R.
,
2002
, “
Falling Film Transitions on Plain and Enhanced Tubes
,”
ASME J. Heat Transfer
,
124
(
3
), pp.
491
499
.
49.
Wang
,
X.
, and
Jacobi
,
A. M.
,
2014
, “
A Thermodynamic Basis for Predicting Falling-Film Mode Transitions
,”
Int. J. Refrig.
,
43
, pp.
123
132
.
50.
Bankoff
,
S. G.
,
1971
, “
Minimum Thickness of a Draining Liquid Film
,”
Int. J. Heat Mass Transfer
,
14
(
12
), pp.
2143
2146
.
51.
Hartley
,
D. E.
, and
Murgatroyd
,
W.
,
1964
, “
Criteria for the Break-Up of Thin Liquid Layers Flowing Isothermally Over Solid Surface
,”
Int. J. Heat Mass Transfer
,
7
(
9
), pp.
1003
1015
.
52.
El-Genk
,
M. S.
, and
Saber
,
H. H.
,
2001
, “
Minimum Thickness of a Flowing Down Liquid Film on a Vertical Surface
,”
Int. J. Heat Mass Transfer
,
44
(
15
), pp.
2809
2825
.
53.
Doniec
,
A.
,
1991
, “
Laminar Flow of a Liquid Rivulet Down a Vertical Solid Surface
,”
Can. J. Chem. Eng.
,
69
(
1
), pp.
198
202
.
54.
Ijima
,
T.
, and
Kuzuoka
,
T.
,
1968
, “
The Film Breakdown Points on Wetted Wall of Vertical Pipe
,”
Kagaku Kougaku
,
32
, p.
264
(in Japanese).
55.
Köroğlu
,
B.
,
Sung Lee
,
K.
, and
Park
,
C.
,
2013
, “
Nano/Micro-Scale Surface Modifications Using Copper Oxidation for Enhancement of Surface Wetting and Falling-Film Heat Transfer
,”
Int. J. Heat Mass Transfer
,
62
, pp.
794
804
.
56.
Hoffmann
,
A.
,
Ausner
,
I.
,
Repke
,
J.
, and
Wozny
,
G.
,
2005
, “
Fluid Dynamics in Multiphase Distillation Processes in Packed Towers
,”
Comput. Chem. Eng.
,
29
(
6
), pp.
1433
1437
.
57.
Hoffmann
,
A.
,
Ausner
,
I.
,
Repke
,
J. U.
, and
Wozny
,
G.
, “
Detailed Investigation of Multiphase (Gas–Liquid and Gas–Liquid–Liquid) Flow Behaviour on Inclined Plates
,”
Chem. Eng. Res. Des.
,
84
(
2
), pp.
147
154
.
58.
Singh
,
R. K.
,
Galvin
,
J. E.
, and
Sun
,
X.
,
2016
, “
Three-Dimensional Simulation of Rivulet and Film Flows Over an Inclined Plate: Effects of Solvent Properties and Contact Angle
,”
Chem. Eng. Sci.
,
142
, pp.
244
257
.
You do not currently have access to this content.