Flow over ducted shallow cavities can excite fluid resonant oscillations. A common industrial application is the flow in corrugated pipes that can be modeled as a series of consecutive shallow cavities. In the current study, the effect of the separation distance on the aeroacoustic source of multiple shallow cavities is investigated. The standing wave method (SWM) is used to measure the source, where multiple microphones reconstruct the acoustic standing wave upstream and downstream of the cavities. The effect of the ratio between the separation distance to cavity length is investigated for a practical range from 0.5 to 1.375 for two- and three-cavity configurations. At low and intermediate sound levels, constructive hydrodynamic interference, resulting in a strong source, is observed for the extremum spacing ratios of 0.5 and 1.375. However, at high excitation levels, 10% and higher, the source, slightly but consistently, decreases upon increasing the separation ratio. These trends persist for both the double- and triple-cavity configurations. On the other hand, the separation distance of destructive interference is found to depend on the number of cavities of the tested configuration. Particle image velocimetry (PIV) measurements of the constructive interference cases show strong synchronized vorticity shedding in all cavities. Each cavity contribution to the total aeroacoustic source is then examined by means of Howe's analogy, and the percentage contribution of each cavity is found to depend on the excitation level.

References

1.
Belfroid
,
S.
,
Shatto
,
D.
, and
Peters
,
M.
,
2007
, “
Flow Induced Pulsations Caused by Corrugated Tubes
,”
ASME
Paper No. PVP2007-26503.
2.
Stel
,
H.
,
Morales
,
R.
,
Franco
,
A.
,
Junqueira
,
S.
,
Erthal
,
R.
, and
Gonçalves
,
M.
,
2010
, “
Numerical and Experimental Analysis of Turbulent Flow in Corrugated Pipes
,”
ASME J. Fluids Eng.
,
132
(
7
), p.
71203
.
3.
Popiel
,
C.
,
Kozak
,
M.
,
Małecka
,
J.
, and
Michalak
,
A.
,
2013
, “
Friction Factor for Transient Flow in Transverse Corrugated Pipes
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
74501
.
4.
Rayleigh
,
L.
,
1878
, “
On the Instability of Jets
,”
Proc. London Math. Soc.
,
s1-10
(
1
), pp.
4
13
.
5.
Michalke
,
A.
,
1965
, “
On Spatially Growing Disturbances in an Inviscid Shear Layer
,”
J. Fluid Mech.
,
23
(
3
), pp.
521
544
.
6.
Miksad
,
R.
,
1972
, “
Experiments on the Nonlinear Stages of Free-Shear-Layer Transition
,”
J. Fluid Mech.
,
56
(
4
), pp.
695
719
.
7.
Rockwell
,
D.
, and
Naudascher
,
E.
,
1978
, “
Review—Self-Sustaining Oscillations of Flow past Cavities
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
152
165
.
8.
Bruggeman
,
J.
,
Hirschberg
,
A.
,
van Dongen
,
M.
,
Wijnands
,
A.
, and
Gorter
,
J.
,
1989
, “
Flow Induced Pulsations in Gas Transport Systems: Analysis of the Influence of Closed Side Branches
,”
ASME J. Fluids Eng.
,
111
(
4
), pp.
484
491
.
9.
Kriesels
,
P.
,
Peters
,
M.
,
Hirschberg
,
A.
,
Wijnands
,
A.
,
Iafrati
,
A.
,
Riccardi
,
G.
,
Piva
,
R.
, and
Bruggeman
,
J.
,
1995
, “
High Amplitude Vortex-Induced Pulsations in a Gas Transport System
,”
J. Sound Vib.
,
184
(
2
), pp.
343
368
.
10.
Radavich
,
P.
,
Selamet
,
A.
, and
Novak
,
J.
,
2001
, “
A Computational Approach for Flow–Acoustic Coupling in Closed Side Branches
,”
J. Acoust. Soc. Am.
,
109
(
4
), pp.
1343
1353
.
11.
Dequand
,
S.
,
Hulshoff
,
S.
, and
Hirschberg
,
A.
,
2003
, “
Self-Sustained Oscillations in a Closed Side Branch System
,”
J. Sound Vib.
,
265
(
2
), pp.
359
386
.
12.
Nakiboglu
,
G.
,
Manders
,
H.
, and
Hirschberg
,
A.
,
2012
, “
Aeroacoustic Power Generated by a Compact Axisymmetric Cavity: Prediction of Self-Sustained Oscillation and Influence of the Depth
,”
J. Fluid Mech.
,
703
, pp.
163
191
.
13.
Golliard
,
J.
,
González-Díez
,
N.
,
Belfroid
,
S.
,
Nakiboğlu
,
G.
, and
Hirschberg
,
A.
,
2013
, “
U-RANS Model for the Prediction of the Acoustic Sound Power Generated in a Whistling Corrugated Pipe
,”
ASME
Paper No. PVP2013-97385.
14.
Nair
,
K.
, and
Sarkar
,
S.
,
2016
, “
Large Eddy Simulation of Self-Sustained Cavity Oscillation for Subsonic and Supersonic Flows
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011102
.
15.
Rajavel
,
B.
, and
Prasad
,
M.
,
2014
, “
Parametric Studies on Acoustics of Corrugated Tubes Using Large Eddy Simulation (LES)
,”
Noise Control Eng. J.
,
62
(
4
), pp.
218
231
.
16.
Williams
,
J.
, and
Hawkings
,
D.
,
1969
, “
Sound Generation by Turbulence and Surfaces in Arbitrary Motion
,”
Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci.
,
264
(
1151
), pp.
321
342
.
17.
Coltman
,
J.
,
1968
, “
Sounding Mechanism of the Flute and Organ Pipe
,”
J. Acoust. Soc. Am.
,
44
(
4
), pp.
983
992
.
18.
Graf
,
H.
, and
Ziada
,
S.
,
1992
, “
Flow Induced Acoustic Resonance in Closed Side Branches: An Experimental Determination of the Excitation Source
,”
International Symposium on Flow-Induced Vibration and Noise
, Chicago, IL, p.
63
.
19.
Graf
,
H.
, and
Ziada
,
S.
,
2010
, “
Excitation Source of a Side-Branch Shear Layer
,”
J. Sound Vib.
,
329
(
14
), pp.
2825
2842
.
20.
Mohamed
,
S.
,
Graf
,
H.
, and
Ziada
,
S.
,
2018
, “
Measurement of the Excitation Source of an Axisymmetric Shallow Cavity Shear Layer
,”
ASME J. Pressure Vessel Technol.
,
140
(3), p. 031304.
21.
Shaaban
,
A.
, and
Ziada
,
S.
,
2018
, “
Acoustic Response of Multiple Shallow Cavities and Prediction of Self-Excited Acoustic Oscillations
,”
ASME J. Fluids Eng.
,
140
(9), p. 091203.
22.
Golliard
,
J.
,
Belfroid
,
S.
,
Vijlbrief
,
O.
, and
Lunde
,
K.
,
2015
, “
Direct Measurements of Acoustic Damping and Sound Amplification in Corrugated Pipes With Flow
,”
ASME
Paper No. PVP2015-45494.
23.
Howe
,
M.
,
1980
, “
The Dissipation of Sound at an Edge
,”
J. Sound Vib.
,
70
(
3
), pp.
407
411
.
24.
Oshkai
,
P.
,
Yan
,
T.
,
Velikorodny
,
A.
, and
VanCaeseele
,
S.
,
2008
, “
Acoustic Power Calculation in Deep Cavity Flows: A Semiempirical Approach
,”
ASME J. Fluids Eng.
,
130
(
5
), p.
051203
.
25.
Finnegan
,
S.
,
Meskell
,
C.
, and
Ziada
,
S.
,
2010
, “
Experimental Investigation of the Acoustic Power Around Two Tandem Cylinders
,”
ASME J. Pressure Vessel Technol.
,
132
(
4
), p.
041306
.
26.
Mohamed
,
S.
, and
Ziada
,
S.
,
2014
, “
PIV Measurements of Aeroacoustic Sources of a Shallow Cavity in a Pipeline
,”
ASME
Paper No. PVP2014-28508.
27.
Nakiboglu
,
G.
,
Belfroid
,
S.
,
Willems
,
J.
, and
Hirschberg
,
A.
,
2010
, “
Whistling Behavior of Periodic Systems: Corrugated Pipes and Multiple Side Branch System
,”
Int. J. Mech. Sci.
,
52
(
11
), pp.
1458
1470
.
28.
Nakiboglu
,
G.
,
Belfroid
,
S.
,
Golliard
,
J.
, and
Hirschberg
,
A.
,
2011
, “
On the Whistling of Corrugated Pipes: Effect of Pipe Length and Flow Profile
,”
J. Fluid Mech.
,
672
, pp.
78
108
.
29.
Nakiboglu
,
G.
, and
Hirschberg
,
A.
,
2012
, “
Aeroacoustic Power Generated by Multiple Compact Axisymmetric Cavities: Effect of Hydrodynamic Interference on the Sound Production
,”
Phys. Fluids
,
24
(
6
), p.
67101
.
30.
Melling
,
A.
,
1997
, “
Tracer Particles and Seeding for Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1406
1416
.
31.
Tropea
,
C.
,
Yarin
,
A.
, and
Foss
,
J.
, eds.,
2007
,
Springer Handbook of Experimental Fluid Mechanics
,
Springer, Berlin
.
32.
Scarano
,
F.
, and
Riethmuller
,
M.
,
2000
, “
Advances in Iterative Multigrid PIV Image Processing
,”
Exp. Fluids
,
29
(
7
), pp.
S051
S060
.
33.
Ziada
,
S.
,
1994
, “
A Flow Visualization Study of Flow-Acoustic Coupling at the Mouth of a Resonant Side-Branch
,”
J. Fluids Struct.
,
8
(
4
), pp.
391
416
.
34.
Mohamed
,
S.
, and
Ziada
,
S.
,
2015
, “
Effect of Cavity Volume on the Flow-Excited Acoustic Resonance of a Shallow Cavity in a Pipe-Line
,”
ASME
Paper No. PVP2015-45205.
35.
Vollmers
,
H.
,
2001
, “
Detection of Vortices and Quantitative Evaluation of Their Main Parameters From Experimental Velocity Data
,”
Meas. Sci. Technol.
,
12
(
8
), pp.
1199
1207
.
36.
Sexl
,
T.
,
1927
, “
Zur Stabilitätsfrage Der Poiseuilleschen Und Couetteschen Strömung
,”
Ann. Phys.
,
388
(
14
), pp.
835
848
.
37.
Gill
,
A.
,
1965
, “
On the Behaviour of Small Disturbances to Poiseuille Flow in a Circular Pipe
,”
J. Fluid Mech.
,
21
(
1
), pp.
145
172
.
38.
Salwen
,
H.
, and
Grosch
,
C.
,
1972
, “
The Stability of Poiseuille Flow in a Pipe of Circular Cross-Section
,”
J. Fluid Mech.
,
54
(
1
), pp.
93
112
.
39.
O'Sullivan
,
P.
, and
Breuer
,
K.
,
1994
, “
Transient Growth in Circular Pipe Flow—I: Linear Disturbances
,”
Phys. Fluids
,
6
(
11
), pp.
3643
3651
.
You do not currently have access to this content.