In this study, a qualitative assessment of transitional velocity engineering models for predicting non-Newtonian slurry flows in a horizontal pipe was performed using data from a wide range of pipe diameters (25–268 mm). In addition, the gamma theta transition model was used to compute selected flow conditions. These models were used to predict transitional velocities in large pipe diameters (up to 420 mm) for slurries. In general, it was observed that most of the current engineering models predict transitional velocities conservatively. Based on the gamma theta transition model results, for large Hedström numbers (He 105), other methods should be used to predict transitional velocities if a change in the pipe diameter (scale-up) results in an order of magnitude increase in the He value. It was also found that the gamma theta transition model predicted a laminar flow condition in the fully developed region for flow conditions with a small plug region (low-yield stress-to-wall shear stress ratio), which is contrary to what has been observed in some experiments. This is attributed to the local fluid rheological parameters values, which might be different from those reported. However, the gamma theta transition model results are in good agreement with the experimental data for flow conditions that have a large plug region (high-yield stress-to-wall shear stress ratio).

References

1.
Xu
,
J.
,
Gillies
,
R.
,
Small
,
M.
, and
Shook
,
C.
,
1993
, “
Laminar and Turbulent Flow of Kaolin Slurries
,”
Hydrotransport
,
12
, pp.
595
613
.
2.
Slatter
,
P. T.
, and
Wasp
,
E. J.
,
2000
, “
The Laminar-Turbulent Transition in Large Pipes
,”
Tenth International Conference on Transport and Sedimentation of Solid Particles
, Wroclaw, Poland, Sept. 4–7, pp.
389
399
.
3.
Wilson
,
K. C.
, and
Thomas
,
A. D.
,
2006
, “
Analytic Model of Laminar‐Turbulent Transition for Bingham Plastics
,”
Can. J. Chem. Eng.
,
84
(
5
), pp.
520
526
.
4.
Van den Heever
,
E.
,
2013
, “
Rheological Model Influence on Pipe Flow Predictions for Homogeneous Non-Newtonian Fluids
,”
M.S. thesis
, Cape Peninsula University of Technology, Cape Town, South Africa.http://etd.cput.ac.za/handle/20.500.11838/1030
5.
Graham
,
L. J.
,
Pullum
,
L.
, and
Wu
,
J.
,
2016
, “
Flow of Non‐Newtonian Fluids in Pipes With Large Roughness
,”
Can. J. Chem. Eng.
,
94
(
6
), pp.
1102
1107
.
6.
Kabwe
,
C.
,
Haldenwang
,
R.
,
Fester
,
V.
, and
Chhabra
,
R.
,
2017
, “
Transitional Flow of Non-Newtonian Fluids in Open Channels of Different Cross-Sectional Shapes
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
6
), pp.
1
19
.
7.
Gharib
,
N.
,
Bharathan
,
B.
,
Amiri
,
L.
,
McGuinness
,
M.
,
Hassani
,
F. P.
, and
Sasmito
,
A. P.
,
2017
, “
Flow Characteristics and Wear Prediction of Herschel‐Bulkley Non‐Newtonian Paste Backfill in Pipe Elbows
,”
Can. J. Chem. Eng.
,
95
(
6
), pp.
1181
1191
.
8.
McFarlane
,
A. J.
,
Addai-Mensah
,
J.
, and
Bremmell
,
K.
,
2005
, “
Rheology of Flocculated Kaolinite Dispersions
,”
Korea-Australia Rheol. J.
,
17
(
12
), pp.
181
190
.
9.
Hammad
,
K. J.
,
2016
, “
The Flow and Decay Behavior of a Submerged Shear-Thinning Jet With Yield Stress
,”
ASME J. Fluids Eng.
,
138
(
8
), p.
081205
.
10.
Malin
,
M. R.
,
1997
, “
The Turbulent Flow of Bingham Plastic Fluids in Smooth Circular Pipes
,”
Int. J. Heat Mass Transfer
,
6
(
6
), pp.
793
804
.
11.
Güzel
,
B.
,
Frigaard
,
I.
, and
Martinez
,
D. M.
,
2009
, “
Predicting Laminar–Turbulent Transition in Poiseuille Pipe Flow for Non-Newtonian Fluids
,”
Chem. Eng. Sci.
,
64
(
2
), pp.
254
264
.
12.
Sutherland
,
A.
,
Haldenwang
,
R.
,
Chhabra
,
R.
, and
van den Heever
,
E.
,
2015
, “
Selecting the Best Rheological and Pipe Turbulent Flow Prediction Models for Non-Newtonian Fluids-Use of RMSE and R2 Vs. AIC
,”
17th International Conference on Transport and Sedimentation of Solid Particles
, Delft, The Netherlands, Sept. 22–25, pp.
317
326
.https://icts.files.wordpress.com/2017/05/sutherland-selecting-the-best-rheological-and-pipe-turbulent-flow-prediction-models-for-non-newtonian-fluids-e28093-use-of-rmse-and-r2-vs-aic.pdf
13.
Liu
,
W.-J.
,
Burgess
,
K.
,
Roudnev
,
A.
, and
Bootle
,
M.
,
2009
, “
Pumping Non-Newtonian Slurries
,”
Tech. Bull., Weir Miner. Div.
,
14
(
2
), pp.
1
4
.https://dokumen.tips/documents/technical-bulletin-14v2-final-08091.html
14.
Swamee
,
P. K.
, and
Aggarwal
,
N.
,
2011
, “
Explicit Equations for Laminar Flow of Bingham Plastic Fluids
,”
J. Pet. Sci. Eng.
,
76
(
3–4
), pp.
178
184
.
15.
Hedström
,
B. O. A.
,
1952
, “
Flow of Plastics Materials in Pipes
,”
Ind. Eng. Chem.
,
44
(
3
), pp.
651
656
.
16.
Shook
,
C. A.
, and
Roco
,
M. C.
,
1991
,
Slurry Flow: Principles and Practice
,
Butterworth-Heinemann
,
Boston, MA
.
17.
Shook
,
C. A.
,
Gillies
,
R. G.
, and
Sanders
,
R. S.
,
2002
,
Pipeline Hydrotransport With Applications in Oilsand Industry
,
Saskatchewan Research Council
,
Saskatoon, SK, Canada
.
18.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
19.
Wilcox
,
D. C.
,
1988
, “
Multiscale Model for Turbulent Flows
,”
AIAA J.
,
26
(
11
), pp.
1311
1320
.
20.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “
A Correlation Based Transition Model Using Local Variables—Part 1: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.
21.
Langtry
,
R. B.
,
Menter
,
F. R.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “
A Correlation Based Transition Model Using Local Variables—Part 2: Test Cases and Industrial Applications
,”
ASME J. Turbomach.
,
128
(
3
), pp.
423
434
.
22.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2005
, “
Transition Modeling for General CFD Applications in Aeronautics
,”
AIAA
Paper No. 2005-522.
23.
Adane
,
K. F. K.
,
Shah
,
S. I. A.
, and
Sanders
,
R. S.
,
2012
, “
Numerical Study of Liquid-Liquid Vertical Dispersed Flows
,”
ASME
Paper No. FEDSM2012-72377.
24.
Antaya
,
C. L.
,
Adane
,
K. F. K.
, and
Sanders
,
R. S.
,
2012
, “
Modelling Concentrated Slurry Pipeline Flows
,”
ASME
Paper No. FEDSM2012-72379.
25.
Hashemi
,
S. A.
,
Spelay
,
R. B.
,
Adane
,
K. F.
, and
Sanders
,
R. S.
,
2016
, “
Solids Velocity Fluctuations in Concentrated Slurries
,”
Can. J. Chem. Eng.
,
94
(
6
), pp.
1059
1065
.
26.
Barth
,
T. J.
, and
Jesperson
,
D. C.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA
Paper No. 89-0366.
27.
Litzenberger
,
C. G.
,
2003
, “
Rheological Study of Kaolin Clay Slurries
,”
M.S thesis
, University of Saskatchewan, Saskatoon, SK, Canada.https://ecommons.usask.ca/handle/10388/etd-04282003-112643
28.
Spelay
,
R. B.
,
2007
, “
Solids Transport in Laminar, Open Channel Flow of Non-Newtonian Slurries
,”
Ph.D. thesis
, University of Saskatchewan, Saskatoon, SK, Canada.https://ecommons.usask.ca/handle/10388/etd-01252007-205230
29.
Peixinho
,
J.
,
Nouar
,
C.
,
Desaubry
,
C.
, and
Théron
,
B.
,
2005
, “
Laminar Transitional and Turbulent Flow of Yield Stress Fluid in a Pipe
,”
J. Non-Newtonian Fluid Mech.
,
128
(
2–3
), pp.
172
184
.
30.
Rudman
,
M.
,
Graham
,
L. J.
,
Blackburn
,
H. M.
, and
Pullum
,
L.
,
2002
, “
Non-Newtonian Turbulent and Transitional Pipe Flow
,” 15th Hydrotransport, Banff, AB, Canada, June 3–5, pp. 271–286.
31.
Esmael
,
A.
, and
Nouar
,
C.
,
2008
, “
Transitional Flow of a Yield-Stress Fluid in a Pipe: Evidence of a Robust Coherent Structure
,”
Phys. Rev. E
,
77
(
5 Pt 2
), p.
057302
.
You do not currently have access to this content.