This paper investigates the ability of computational fluid dynamics (CFD) simulations to accurately predict the turbulent flow separating from a three-dimensional (3D) axisymmetric hill using a recently developed four-equation eddy-viscosity model (EVM). The four-equation model, denoted as k–kL–ω–v2, was developed to demonstrate physically accurate responses to flow transition, streamline curvature, and system rotation effects. The model was previously tested on several two-dimensional cases with results showing improvement in predictions when compared to other popularly available EVMs. In this paper, we present a more complex 3D application of the model. The test case is turbulent boundary layer flow with thickness δ over a hill of height 2δ mounted in an enclosed channel. The flow Reynolds number based on the hill height (ReH) is 1.3 × 105. For validation purposes, CFD simulation results obtained using the k–kL–ω–v2 model are compared with two other Reynolds-averaged Navier–Stokes (RANS) models (fully turbulent shear stress transport k–ω and transition-sensitive k–kL–ω) and with experimental data. Results obtained from the simulations in terms of mean flow statistics, pressure distribution, and turbulence characteristics are presented and discussed in detail. The results indicate that both the complex physics of flow transition and streamline curvature should be taken into account to significantly improve RANS-based CFD predictions for applications involving blunt or curved bodies in a low Re turbulent regime.

References

1.
Jackson
,
P. S.
, and
Hunt
,
J. C. R.
,
1975
, “
Turbulent Wind Flow Over a Low Hill
,”
Q. J. R. Met. Soc.
,
101
(
430
), pp.
929
955
.
2.
Chitta
,
V.
,
Dhakal
,
T. P.
, and
Walters
,
D. K.
,
2015
, “
Sensitization of a Transition-Sensitive Linear Eddy-Viscosity Model to Rotation and Curvature Effects
,”
ASME J. Fluids Eng.
,
137
(
3
), p.
031207
.
3.
Ishihara
,
T.
,
Hibi
,
K.
, and
Oikawa
,
S.
,
1999
, “
A Wind Tunnel Study of Turbulent Flow Over a Three-Dimensional Steep Hill
,”
J. Wind Eng. Ind. Aerodyn.
,
83
(
1–3
), pp.
95
107
.
4.
Simpson
,
R. L.
,
Long
,
C. H.
, and
Byun
,
G.
,
2002
, “
Study of Vortical Separation From an Axisymmetric Hill
,”
Int. J. Heat Fluid Flow
,
23
(
5
), pp.
582
591
.
5.
Byun
,
G.
,
Simpson
,
R. L.
, and
Long
,
C. H.
,
2004
, “
Study of Vortical Separation From Three-Dimensional Symmetric Bumps
,”
AIAA J.
,
42
(
4
), pp.
754
765
.
6.
Patel
,
N.
,
Stone
,
C.
, and
Menon
,
S.
,
2003
, “
Large-Eddy Simulation of Turbulent Flow Over an Axisymmetric Hill
,”
AIAA
Paper No. 2003-967.
7.
Patel
,
N.
, and
Menon
,
S.
,
2007
, “
Structure of Flow Separation and Reattachment behind an Axisymmetric Hill
,”
J. Turbul.
,
8
(
36
), pp.
1
24
.
8.
Persson
,
T.
,
Liefvendahl
,
M.
,
Bensow
,
R. E.
, and
Fureby
,
C.
,
2006
, “
Numerical Investigation of the Flow Over an Axisymmetric Hill Using LES, DES, and RANS
,”
J. Turbul.
,
7
(
4
), pp.
1
17
.
9.
Wang
,
C.
,
Jang
,
Y. J.
, and
Leschziner
,
M. A.
,
2004
, “
Modelling Two- and Three-Dimensional Separation From Curved Surfaces With Anisotropy-Resolving Turbulence Closures
,”
Int. J. Heat Fluid Flow
,
25
(
3
), pp.
499
512
.
10.
Castagna
,
J.
,
Yao
,
Y.
, and
Yao
,
J.
,
2014
, “
Direct Numerical Simulation of a Turbulent Flow Over an Axisymmetric Hill
,”
Comput. Fluids
,
95
, pp.
116
126
.
11.
Spalart
,
P. R.
,
2000
, “
Strategies for Turbulence Modelling and Simulations
,”
Int. J. Heat Fluid Flow
,
21
(
3
), pp.
252
263
.
12.
Chitta
,
V.
,
Dhakal
,
T. P.
, and
Walters
,
D. K.
,
2013
, “
Development and Application of a New Four-Equation Eddy-Viscosity Model for Flows With Transition, Curvature and Rotation Effects
,”
ASME
Paper No. FEDSM2013-16372.
13.
Chitta
,
V.
,
Dhakal
,
T. P.
, and
Walters
,
D. K.
,
2012
, “
Prediction of Aerodynamic Characteristics for Elliptic Airfoils in Unmanned Aerial Vehicle Applications
,”
Low Reynolds Number Aerodynamics and Transition
,
M. S.
Genc
, ed.,
InTech
,
Rijeka, Croatia
, pp.
59
78
.
14.
Chitta
,
V.
,
Jamal
,
T.
, and
Walters
,
D. K.
,
2014
, “
Numerical Investigation of Low-Reynolds Number Airfoil Flows Using Transition-Sensitive and Fully Turbulent RANS Models
,”
ASME
Paper No. FEDSM2014-21700.
15.
Dhakal
,
T. P.
, and
Walters
,
D. K.
,
2011
, “
A Three-Equation Variant of the SST k–ω Model Sensitized to Rotation and Curvature Effects
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111201
.
16.
Walters
,
D. K.
, and
Cokljat
,
D.
,
2008
, “
A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow
,”
ASME J. Fluids Eng.
,
130
(
12
), p.
121401
.
17.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
18.
Lopez
,
M.
, and
Walters
,
D. K.
,
2016
, “
A Recommended Correction to the kT–kL–ω Transition-Sensitive Eddy-Viscosity Model
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
024501
.
19.
York
,
W. D.
,
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2009
, “
A Simple and Robust Linear Eddy-Viscosity Formulation for Curved and Rotating Flows
,”
Int. J. Numer. Methods Heat Fluid Flow
,
19
(
6
), pp.
745
776
.
20.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass, and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1787
1806
.
21.
ANSYS
, 2013, “
ANSYS Fluent Theory Guide 14.5.7
,”
ANSYS Inc.
,
Canonsburg, PA
.
22.
Nair
,
M. T.
, and
Sengupta
,
T. K.
,
1997
, “
Unsteady Flow Past Elliptic Cylinders
,”
J. Fluids Struct.
,
11
(
6
), pp.
555
595
.
23.
Garcia-Villalba
,
M.
,
Li
,
N.
,
Rodi
,
W.
, and
Leschziner
,
M. A.
,
2009
, “
Large-Eddy Simulation of Separated Flow Over a Three-Dimensional Axisymmetric Hill
,”
J. Fluid Mech.
,
627
, pp.
55
96
.
24.
Tessicini
,
F.
,
Li
,
N.
, and
Leschziner
,
M. A.
,
2007
, “
Large-Eddy Simulation of Three-Dimensional Flow Around a Hill-Shaped Obstruction With a Zonal Near-Wall Approximation
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
894
908
.
25.
Much
,
K. C.
,
Hoffman
,
P. H.
, and
Bradshaw
,
P.
,
1985
, “
The Effect of Convex Surface Curvature on Turbulent Boundary Layers
,”
J. Fluid Mech.
,
161
(
1
), pp.
347
369
.
26.
Ebadi
,
A.
,
2016
, “
Transport of Heat and Momentum in Non-Equilibrium Wall-Bounded Flows
,”
Ph.D. dissertation
, University of New Hampshire, Durham, NH.https://scholars.unh.edu/dissertation/1381/
27.
Lillard
,
R. P.
,
Oliver
,
A. B.
,
Olsen
,
M. E.
,
Blaisdell
,
G. A.
, and
Lyrintzis
,
A. S.
,
2011
, “
The LagRST Model: A Turbulence Model for Non-Equilibrium Flows
,”
AIAA
Paper No. 2012-0444.
28.
Ma
,
R.
, and
Simpson
,
R. L.
,
2005
, “
Characterization of Turbulent Flow Downstream of a Three-Dimensional Axisymmetric Bump
,”
Tsfp Digital Library Online
,
Begell House
, Danbury, CT.
29.
Walters
,
D. K.
,
Bhushan
,
S.
,
Alam
,
M. F.
, and
Thompson
,
D. S.
,
2013
, “
Investigation of a Dynamic Hybrid RANS/LES Modelling Methodology for Finite Volume CFD Simulations
,”
Flow Turbul. Combust.
,
91
(
3
), pp.
643
667
.
30.
Chitta
,
V.
, and
Walters
,
D. K.
,
2015
, “
A Hybrid RANS-LES Modeling Methodology Sensitized to Transitional and Curvature/Rotation Effects
,”
ASME
Paper No. IMECE2015-53155.
You do not currently have access to this content.