Strong electric field applied between the two electrodes initiates a corona discharge, which results in ionization of gas molecules and induces ionic wind, also known as the electrohydrodynamic (EHD) flow. If an electric field is asymmetric, then a unidirectional gas flow can be formed causing so-called EHD gas pumping. In spite of many experiments with different electrode shapes and configurations such as needle-to-mesh, needle-to-ring, wire-to-rod, wire-to-non-parallel plates, etc., aimed at production of intensive gas pumping, the investigated EHD pumps were most often unsatisfactory. In our research, we proposed a new configuration of electrodes for the EHD pump, where all electrodes (excluding the first one and the last one) are simultaneously the discharge (on one side) and the collecting (on the other side) electrodes. Our electrodes configuration can be easily multiplied without additional space between consecutive electrodes. In such a case, a high ratio of pumping efficiency to pump size can be obtained. The Time-Resolved Particle Image Velocimetry technique was used to investigate the EHD flow generated by our EHD pump.

References

1.
Robinson
,
M.
,
1961
, “
Movement of Air in the Electric Wind of the Corona Discharge
,”
J. Am. Inst. Elect. Eng.
,
80
(
2
), pp.
143
150
.
2.
Robinson
,
M.
,
1962
, “
A History of the Electric Wind
,”
Am. J. Phys.
,
30
(
5
), pp.
366
372
.
3.
Yabe
,
A.
,
Mori
,
Y.
, and
Hijikata
,
K.
,
1978
, “
EHD Study of the Corona Wind Between Wire and Plate Electrodes
,”
Aiaa J.
,
60
(
4
), pp.
340
345
.
4.
Mitchell
,
A. S.
, and
Williams
,
E.
,
1978
, “
Heat Transfer by the Corona Wind Impinging on a Flat Surface
,”
J. Electrostat.
,
5
, pp.
309
324
.
5.
Yamamoto
,
T.
, and
Velkoff
,
H.
,
1981
, “
Electrohydrodynamics in an Electrostatic Precipitator
,”
J. Fluids Mech.
,
108
(
1
), pp.
1
18
.
6.
Goldman
,
M.
,
Goldman
,
A.
, and
Sigmond
,
R. S.
,
1985
, “
The Corona Discharge, Its Properties and Specific Uses
,”
Pure Appl. Chem.
,
57
(
9
), pp.
1353
1362
.
7.
Masuda
,
S.
, and
Hosokawa
,
S.
,
1995
, “
Electrostatic Precipitation
,”
Handbook of Electrostatic Processes
,
J. S.
Chang
,
A. J.
Kelly
, and
J. M.
Crowley
, eds.,
Marcel Dekker
,
New York
, pp.
441
480
.
8.
Yamamoto
,
T.
,
Okuda
,
M.
, and
Okubo
,
M.
,
2002
, “
Three-Dimensional Ionic Wind and Electrohydrodynamics of Tuft/Point Corona Electrostatic Precipitator
,”
IEEE Industry Applications Conference
, Pittsburgh, PA, Oct. 13–18, pp. 1397–1403.
9.
Leger
,
L.
,
Moreau
,
E.
, and
Touchard
,
G.
,
2002
, “
Effect of a DC Corona Electrical Discharge on the Airflow Along a Flat Plate
,”
IEEE Trans. Ind. Appl.
,
38
(
6
), pp.
1478
1485
.
10.
Zhao
,
L.
, and
Adamiak
,
K.
,
2008
, “
Numerical Simulation of the Electrohydrodynamic Flow in a Single Wire-Plate Electrostatic Precipitator
,”
IEEE Trans. Ind. Appl.
,
44
(
3
), pp.
683
691
.
11.
Farnoosh
,
N.
,
Adamiak
,
K.
, and
Castle
,
G. S. P.
,
2011
, “
Three-Dimensional Analysis of Electrohydrodynamic Flow in a Spiked Electrode-Plate Electrostatic Precipitator
,”
J. Electrostat.
,
69
(
5
), pp.
419
428
.
12.
Hanaoka
,
R.
,
Takahashi
,
I.
,
Takata
,
S.
,
Fukami
,
T.
, and
Kanamaru
,
Y.
,
2009
, “
Properties of EHD Pump With Combination of Rod-to-Rod and Meshy Parallel Plates Electrode Assemblies
,”
IEEE Trans. Dielectr. Electr. Insul.
,
16
(
2
), pp.
440
447
.
13.
Stuetzer
,
O. M.
,
1959
, “
Ion Drag Pressure Generation
,”
J. Appl. Phys.
,
30
(
7
), pp.
984
994
.
14.
Pickard
,
W. F.
,
1963
, “
Ion Drag Pumping. I. Theory
,”
J. Appl. Phys.
,
34
(
2
), pp.
246
250
.
15.
Bryan
,
J. E.
, and
Seyed-Yagoobi
,
J.
,
1992
, “
An Experimental Investigation of Ion-Drag Pump in a Vertical and Axisymmetric Configuration
,”
IEEE Trans. Ind. Appl.
,
28
(
2
), pp.
310
316
.
16.
Melcher
,
J. R.
,
1966
, “
Traveling Wave Induced Electroconvection
,”
Phys. Fluids
,
9
(
8
), pp.
1548
1555
.
17.
Washabaugh
,
A. P.
,
Zahn
,
M.
, and
Melcher
,
J. R.
,
1989
, “
Electrohydrodynamic Traveling-Wave Pumping of Homogeneous Semi-Insulating Liquids
,”
IEEE Trans. Dielectr. Electr. Insul.
,
24
(
5
), pp.
807
834
.
18.
Brand
,
K.
, and
Seyed-Yagoobi
,
J.
,
2003
, “
Experimental Study of Electrohydrodynamic Induction Pumping of a Dielectric Micro Liquid Film in External Horizontal Condensation Process
,”
ASME J. Heat Transfer
,
125
(
6
), pp.
1096
1105
.
19.
Hanaoka
,
R.
,
Takata
,
S.
,
Murakumo
,
M.
, and
Anzai
,
H.
,
2002
, “
Properties of Liquid Jet Induced by Electrohydrodynamic Pumping in Dielectric Liquids
,”
IEEJ Trans. Electr. Electron. Eng.
,
138
(
4
), pp.
1
9
.
20.
Atten
,
P.
, and
Seyed-Yagoobi
,
J.
,
2003
, “
Electrohydrodynamically Induced Dielectric Liquid Flow Through Pure Conduction in Point/Plane Geometry
,”
IEEE Trans. Dielectr. Electr. Insul.
,
10
(
1
), pp.
27
36
.
21.
Feng
,
Y.
, and
Seyed-Yagoobi
,
J.
,
2006
, “
Control of Liquid Flow Distribution Utilizing EHD Conduction Pumping Mechanism
,”
IEEE Trans. Ind. Appl.
,
42
(
2
), pp.
369
377
.
22.
Pearson
,
M. R.
, and
Seyed-Yagoobi
,
J.
,
2009
, “
Advances in Electrohydrodynamic Conduction Pumping
,”
IEEE Trans. Dielectr. Electr. Insul.
,
16
(
2
), pp.
424
434
.
23.
Seyed-Yagoobi
,
J.
,
Chato
,
J. C.
,
Crowley
,
J. M.
, and
Krein
,
P. T.
,
1989
, “
Induction Electrohydrodynamic Pump in a Vertical Configuration: Part 1—Theory
,”
ASME J. Heat Transfer
,
111
(
3
), pp.
664
669
.
24.
Seyed-Yagoobi
,
J.
,
Bryan
,
J. E.
, and
Castaneda
,
J. A.
,
1995
, “
Theoretical Analysis of Ion-Drag Pumping
,”
IEEE Trans. Ind. Appl.
,
31
(
3
), pp.
469
476
.
25.
Feng
,
Y.
, and
Seyed-Yagoobi
,
J.
,
2004
, “
Understanding of Electrohydrodynamic Conduction Pumping Phenomenon
,”
Phys. Fluids
,
16
(
7
), pp.
2432
2441
.
26.
Castellanos
,
A.
,
1998
,
Electrohydrodynamics
,
Springer-Verlag
,
New York
.
27.
D'Adamo
,
J.
,
Sosa
,
R.
, and
Artana
,
G.
,
2014
, “
Active Control of a Backward Facing Step Flow With Plasma Actuators
,”
ASME J. Fluids Eng.
,
136
(
12
), p. 121105.
28.
Yang
,
L.
,
Li
,
J.
,
Cai
,
J.
,
Wang
,
G.
, and
Zhang
,
Z.
,
2016
, “
Lift Augmentation Based on Flap Deflection With Dielectric Barrier Discharge Plasma Flow Control Over Multi-Element Airfoils
,”
ASME J. Fluids Eng.
,
138
(
3
), p.
031401
.
29.
Crowley
,
J. M.
,
Wright
,
G. S.
, and
Chato
,
J. C.
,
1990
, “
Selecting a Working Fluid to Increase the Efficiency and Flow Rate of an EHD Pump
,”
IEEE Trans. Ind. Appl.
,
26
(
1
), pp.
42
49
.
30.
Castellanos
,
A.
,
1991
, “
Coulomb-Driven Convection in Electrohydrodynamics
,”
IEEE Trans. Electr. Insul.
,
26
(
6
), pp.
1201
1215
.
31.
Zhang
,
J.
, and
Lai
,
F. C.
,
2011
, “
Effect of Emitting Electrode Number on the Performance of EHD Gas Pump in a Rectangular Channel
,”
J. Electrostat.
,
69
(
6
), pp.
486
493
.
32.
Podliński
,
J.
,
Niewulis
,
A.
,
Berendt
,
A.
, and
Mizeraczyk
,
J.
,
2013
, “
Pumping Effect Measured by PIV Method in a Multilayer Spike Electrode EHD Device for Air Cleaning
,”
IEEE Trans. Ind. Appl.
,
49
(
6
), pp.
2402
2408
.
33.
Rathinakumar
,
V.
, and
Murugantham
,
T. M.
,
2015
, “
Effect of Voltage Variation in Electrohydrodynamic (EHD) Pump
,”
Int. J. Emerg. Technol. Adv. Eng.
,
5
(
7
), pp.
1
8
.
34.
Qiu
,
W.
,
Xia
,
L.
,
Tan
,
X.
, and
Yang
,
L.
,
2010
, “
The Velocity Characteristics of a Serial-Staged EHD Gas Pump in Air
,”
IEEE Trans. Plasma Sci.
,
38
(
10
), pp.
2848
2853
.
35.
Tsubone
,
H.
,
Ueno
,
J.
,
Komeili
,
B.
,
Minami
,
S.
,
Harvel
,
G. D.
,
Urashima
,
K.
,
Ching
,
C. Y.
, and
Chang
,
J. S.
,
2008
, “
Flow Characteristics of DC Wire-Non-Parallel Plate Electrohydrodynamic Gas Pumps
,”
J. Electrostat.
,
66
(
1–2
), pp.
115
121
.
36.
Mazumder
,
A. K. M. M. H.
, and
Lai
,
F. C.
,
2014
, “
Enhancement in Gas Pumping in a Square Channel With Two-Stage Corona Wind Generator
,”
IEEE Trans. Ind. Appl.
,
50
(
4
), pp.
2296
2305
.
37.
Darabi
,
J.
, and
Rhodes
,
C.
,
2006
, “
CFD Modeling of an Ion-Drag Micropump
,”
Sens. Actuators A Phys.
,
127
(
1
), pp.
94
103
.
38.
Zoulkarneev
,
A.
, and
Choi
,
J. H.
,
2008
, “
Electro-Hydrodynamic Micro-Pump and Method of Operating the Same
,” U.S. Patent No. 2008/0118370 A1.
39.
Sugiyama
,
H.
,
Ogura
,
H.
, and
Otsubo
,
Y.
,
2011
, “
Fluid Devices by the Use of Electrohydrodynamic Effects of Water
,”
J. Appl. Fluid Mech.
,
4
(
1
), pp.
27
33
.
40.
Roy
,
S.
, and
Zhao
,
P.
,
2015
, “
A Method and Apparatus for Pumping a Liquid
,” U.S. Patent No. 2015/0337815A1.
41.
Darabi
,
J.
,
Rada
,
M.
,
Ohadi
,
M. M.
, and
Lawler
,
J.
,
2002
, “
Design, Fabrication, and Testing of an Electrohydrodynamic Ion-Drag Micropump
,”
J. Microelectromech. Syst.
,
11
(
6
), pp.
684
690
.
42.
Seyed-Yagoobi
,
J.
, and
Bryan
,
J. E.
,
2003
, “
Electrohydrodynamic Conduction Pump
,” U.S. Patent No. 2003/0206807 A1.
43.
Yeong
,
S. I.
,
Seyed-Yagoobi
,
J.
, and
Atten
,
P.
,
2003
, “
Theoretical/Numerical Study of Electrohydrodynamic Pumping Through Conduction Phenomenon
,”
IEEE Trans. Ind. Appl.
,
39
(
2
), pp.
355
361
.
44.
Kim
,
W.
,
Chun Ryu
,
J.
,
Kweon Suh
,
Y.
, and
Hyoung Kang
,
K.
,
2011
, “
Pumping of Dielectric Liquids Using Non-Uniform-Field Induced Electrohydrodynamic Flow
,”
Appl. Phys. Lett.
,
99
(
22
), pp.
10
13
.
45.
Podlinski
,
J.
,
Berendt
,
A.
, and
Mizeraczyk
,
J.
,
2013
, “
Electrohydrodynamic Secondary Flow and Particle Collection Efficiency in Spike-Plate Multi-Electrode Electrostatic Precipitator
,”
IEEE Trans. Dielectr. Insul.
,
20
(
5
), pp.
1481
1488
.
46.
Berendt
,
A.
,
Podliński
,
J.
, and
Mizeraczyk
,
J.
,
2011
, “
Elongated DBD With Floating Interelectrodes for Actuators
,”
Eur. Phys. J. Appl. Phys.
,
55
(
1
), p.
13804
.
47.
Berendt
,
A.
,
Podliński
,
J.
, and
Mizeraczyk
,
J.
,
2011
, “
Comparison of Airflow Patterns Produced by DBD Actuators With Smooth or Saw-like Discharge Electrode
,”
J. Phys.: Conf. Ser.
,
301
(
1
), p.
012018
.
48.
Niewulis
,
A.
,
Podlinski
,
J.
,
Kocik
,
M.
,
Barbucha
,
R.
,
Mizeraczyk
,
J.
, and
Mizuno
,
A.
,
2007
, “
EHD Flow Measured by 3D PIV in a Narrow Electrostatic Precipitator With Longitudinal-to-Flow Wire Electrode and Smooth or Flocking Grounded Plane Electrode
,”
J. Electrostat.
,
65
(
12
), pp.
728
734
.
49.
Niewulis
,
A.
,
Berendt
,
A.
,
Podlinski
,
J.
, and
Mizeraczyk
,
J.
,
2013
, “
Electrohydrodynamic Flow Patterns and Collection Efficiency in Narrow Wire-Cylinder Type Electrostatic Precipitator
,”
J. Electrostat.
,
71
(
4
), pp.
808
814
.
50.
Ning
,
Z.
,
Podlinski
,
J.
,
Shen
,
X.
,
Li
,
S.
,
Wang
,
S.
,
Han
,
P.
, and
Yan
,
K.
,
2016
, “
Electrode Geometry Optimization in Wire-Plate Electrostatic Precipitator and Its Impact on Collection Efficiency
,”
J. Electrostat.
,
80
, pp.
76
84
.
51.
Altamimi
,
G.
,
Illias
,
H. A.
,
Mokhtar
,
N.
,
Mokhlis
,
H.
, and
Bakar
,
A. H. A.
,
2014
, “
Corona Discharges Under Various Types of Electrodes
,”
IEEE International Conference on Power and Energy
, Kuching, Malaysia, Dec. 1–3, pp.
5
8
.
52.
Mizeraczyk
,
J.
,
Berendt
,
A.
, and
Podliński
,
J.
,
2016
, “
Temporal and Spatial Evolution of EHD Particle Flow Onset in Air in a Needle-to-Plate Negative DC Corona Discharge
,”
J. Phys. D. Appl. Phys.
,
49
(
20
), p.
205203
.
53.
Saber
,
A.
,
Lundström
,
T. S.
, and
Hellström
,
J. G. I.
,
2016
, “
Influence of Inertial Particles on Turbulence Characteristics in Outer and Near Wall Flow as Revealed With High Resolution Particle Image Velocimetry
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091303
.
54.
Willert
,
C.
,
1996
, “
The Fully Digital Evaluation of Photographic PIV Recordings
,”
Appl. Sci. Res.
,
56
(
2–3
), pp.
79
102
.
55.
Westerweel
,
J.
,
Dabiri
,
D.
, and
Gharib
,
M.
,
1997
, “
The Effect of a Discrete Window Offset on the Accuracy of Cross-Correlation Analysis of Digital PIV Recordings
,”
Exp. Fluids
,
23
(
1
), pp.
20
28
.
56.
Gui
,
L.
,
Merzkirch
,
W.
, and
Fei
,
R.
,
2000
, “
A Digital Mask Technique for Reducing the Bias Error of the Correlation-Based PIV Interrogation Algorithm
,”
Exp. Fluids
,
29
(
1
), pp.
30
35
.
57.
Charonko
,
J. J.
, and
Vlachos
,
P. P.
,
2013
, “
Estimation of Uncertainty Bounds for Individual Particle Image Velocimetry Measurements From Cross-Correlation Peak Ratio
,”
Meas. Sci. Technol.
,
24
(
6
), p.
065301
.
You do not currently have access to this content.