Abstract

Perforated plates are commonly used for flow control in pressurized systems. In different industrial applications, these devices are also used in series (multistage perforated plates) to manage high pressure drop or reduce cavitation occurrence in industrial pipes and enhance efficiency of gas turbines in power plants. Based on analysis of literature and modeling considerations, a functional relationship that describes the dimensionless pressure loss for multistage perforated plates is proposed in this paper. Moreover, numerical investigation of the influence of the spacing between perforated plates for two identical-stage plates with aligned and misaligned holes is carried out by simulating a wide range of Reynolds number in turbulent flow regime. The obtained results include the trend of the pressure loss coefficient as the spacing between the two perforated plates varies for both cases of aligned and misaligned holes. The numerical achievements also show that for small spacing, the pressure loss coefficient is very different from that caused by two independent plates and is strongly influenced by the alignment between the holes of the two plates. By increasing the spacing, the behavior of the losses caused by the two-stage plates tends to that of two independent plates. A critical spacing between the plates has also been defined, beyond which the pressure losses are independent from the alignment of the holes.

References

1.
Laws
,
E. M.
, and
Ouazzane
,
A. K.
,
1995
, “
A Further Investigation Into Flow Conditioner Design Yielding Compact Installations for Orifice Plate Flow Metering
,”
Flow Meas. Instrum.
,
6
(
3
), pp.
187
199
.10.1016/0955-5986(95)00007-9
2.
Qian
,
J.
,
Zhang
,
M.
,
Lei
,
L.
,
Chen
,
F.
,
Chen
,
L.
,
Wei
,
L.
, and
Jin
,
Z.
,
2016
, “
Mach Number Analysis on Multi-Staged Perforated Plates in High Pressure Reducing Valve
,”
Energy Convers. Manage.
,
119
, pp.
81
90
.10.1016/j.enconman.2016.04.029
3.
Kado
,
H.
,
Fujiwara
,
Y.
,
Hosokawa
,
Y.
,
Takimoto
,
M.
, and
Taniguchi
,
T.
,
1985
, “
Production of Fully Developed Pipe Flow Using Perforated Plates
,”
Bull. JSME
,
28
(
243
), pp.
1955
1962
.10.1299/jsme1958.28.1955
4.
Kado
,
H.
,
Fujiwara
,
Y.
,
Hosokawa
,
Y.
, and
Morikawa
,
Y.
,
1987
, “
Production of Fully Developed Pipe Flow Using Perforated Plates: (2nd Report, Effect of Rectifying Device on Orifice Flowmeter Accuracy)
,”
Bull. JSME
,
30
(
261
), pp.
430
436.
10.1299/jsme1987.30.430
5.
Schluter
,
T.
, and
Merzkirch
,
W.
,
1996
, “
PIV Measurements of the Time-Averaged Flow Velocity Downstream of Flow Conditioners in a Pipeline
,”
Flow Meas. Instrum.
,
7
(
3–4
), pp.
173
179
.10.1016/S0955-5986(96)00016-7
6.
Xiong
,
W.
,
Kalkuhler
,
K.
, and
Merzkirch
,
W.
,
2003
, “
Velocity and Turbulence Measurements Downstream of Flow Conditioners
,”
Flow Meas. Instrum.
,
14
(
6
), pp.
249
260
.10.1016/S0955-5986(03)00031-1
7.
Kim
,
B. C.
,
Pak
,
B. C.
,
Cho
,
N. H.
,
Chi
,
D. S.
,
Choi
,
H. M.
,
Choi
,
Y. M.
, and
Park
,
K. A.
,
1997
, “
Effects of Cavitation and Plate Thickness on Small Diameter Ratio Orifice Meters
,”
Flow Meas. Instrum.
,
8
(
2
), pp.
85
92
.10.1016/S0955-5986(97)00034-4
8.
Testud
,
P.
,
Moussou
,
P.
,
Hirschberg
,
A.
, and
Aurégan
,
Y.
,
2007
, “
Noise Generated by Cavitating Single-Hole and Multi-Hole Orifices in a Water Pipe
,”
J. Fluids Struct.
,
23
(
2
), pp.
163
189
.10.1016/j.jfluidstructs.2006.08.010
9.
Dabiri
,
S.
,
Sirignano
,
W. A.
, and
Joseph
,
D. D.
,
2007
, “
Cavitation in Orifice Flow
,”
Phys. Fluids
,
19
(
7
), pp.
72
112
.
10.
Ferrarese
,
G.
,
Messa
,
V. M.
,
Rossi
,
M. M.
, and
Malavasi
,
S.
,
2015
, “
New Method for Predicting the incipient cavitation Index by Means of Single-Phase Computational Fluid Dynamics Model
,”
Adv. Mech. Eng.
,
7
(
3
), pp.
1
11
.10.1177/1687814015575974
11.
Maynes
,
D.
,
Holt
,
G. J.
, and
Blotter
,
J.
,
2013
, “
Cavitation Inception and Head Loss Due to Liquid Flow Through Perforated Plates of Varying Thickness
,”
ASME J. Fluids Eng.
,
135
(
3
), p.
031302
.10.1115/1.4023407
12.
Malavasi
,
S.
,
Messa
,
G.
,
Fratino
,
U.
, and
Pagano
,
A.
,
2015
, “
On Cavitation Occurrence in Perforated Plates
,”
Flow Meas. Instrum.
,
41
, pp.
129
139
.10.1016/j.flowmeasinst.2014.11.002
13.
Ebrahimi
,
B.
,
He
,
G.
,
Tang
,
Y.
,
Franchek
,
M.
,
Liu
,
D.
,
Pickett
,
J.
,
Springett
,
F.
, and
Franklin
,
D.
,
2017
, “
Characterization of High-Pressure Cavitating Flow Through a Thick Orifice Plate in a Pipe of Constant Cross Section
,”
Int. J. Therm. Sci.
,
114
, pp.
229
240
.10.1016/j.ijthermalsci.2017.01.001
14.
Jianhua
,
W.
,
Wanzheng
,
A.
, and
Qi
,
Z.
,
2010
, “
Head Loss Coefficient of Orifice Plate Energy Dissipator
,”
J. Hydraul. Res.
,
48
(
4
), pp.
526
530
.10.1080/00221686.2010.507347
15.
Bayazit
,
Y.
,
Sparrow
,
E. M.
, and
Joseph
,
D. D.
,
2014
, “
Perforated Plates for Fluid Management: Plate Geometry Effects and Flow Regimes
,”
Int. J. Therm. Sci.
,
85
, pp.
104
111
.10.1016/j.ijthermalsci.2014.06.002
16.
Gan
,
G.
, and
Riffat
,
S. B.
,
1997
, “
Pressure Loss Characteristics of Orifice and Perforated Plates
,”
Exp. Therm. Fluid Sci.
,
14
(
2
), pp.
160
165
.10.1016/S0894-1777(96)00041-6
17.
Mehmood
,
M. A.
,
Ibrahim
,
M. A.
,
Ullah
,
A.
, and
Inayat
,
M. H.
,
2019
, “
CFD Study of Pressure Loss Characteristics of Multi-Holed Orifice Plates Using Central Composite Design
,”
Flow Meas. Instrum.
,
70
, p.
101654
.10.1016/j.flowmeasinst.2019.101654
18.
Singh
,
V. K.
, and
Tharakan
,
T. J.
,
2015
, “
Numerical Simulations for Multi-Hole Orifice Flow Meter
,”
Flow Meas. Instrum.
,
45
, pp.
375
383
.10.1016/j.flowmeasinst.2015.08.004
19.
Zhao
,
T.
,
Zhang
,
J.
, and
Ma
,
L.
,
2011
, “
A General Structural Design Methodology for Multi-Hole Orifices and Its Experimental Application
,”
J. Mech. Sci. Technol.
,
25
(
9
), pp.
2237
2246
.10.1007/s12206-011-0706-3
20.
Gronych
,
T.
,
Jeřáb
,
M.
,
Peksa
,
L.
,
Wild
,
J.
,
Staněk
,
F.
, and
Vičar
,
M.
,
2012
, “
Experimental Study of Gas Flow Through a Multi-Opening Orifice
,”
Vacuum
,
86
(
11
), pp.
1759
1763
.10.1016/j.vacuum.2012.02.008
21.
Shaaban
,
S.
,
2015
, “
On the Performance of Perforated Plate With Optimized Hole Geometry
,”
Flow Meas. Instrum.
,
46
, pp.
44
50
.10.1016/j.flowmeasinst.2015.08.012
22.
Barros Filho
,
J. A.
,
Santos
,
A. A.
,
Navarro
,
M. A.
, and
Jordão
,
E.
,
2015
, “
Effect of Chamfer Geometry on the Pressure Drop of Perforated Plates With Thin Orifices
,”
Nucl. Eng. Des.
,
284
, pp.
74
79
.10.1016/j.nucengdes.2014.12.009
23.
Guo
,
B. Y.
,
Houa
,
Q. F.
,
Yua
,
A. B.
,
Li
,
L. F.
, and
Guo
,
J.
,
2013
, “
Numerical Modelling of the Gas Flow Through Perforated Plates
,”
Chem. Eng. Res. Des.
,
284
, pp.
403
408
.10.1016/j.cherd.2012.10.004
24.
Malavasi
,
S.
,
Messa
,
G.
,
Fratino
,
U.
, and
Pagano
,
A.
,
2012
, “
On the Pressure Losses Through Perforated Plates
,”
Flow Meas. Instrum.
,
28
, pp.
57
66
.10.1016/j.flowmeasinst.2012.07.006
25.
Özahi
,
E.
,
2015
, “
An Analysis on the Pressure Loss Through Perforated Plates at Moderate Reynolds Numbers in Turbulent Flow Regime
,”
Flow Meas. Instrum.
,
43
, pp.
6
13
.10.1016/j.flowmeasinst.2015.03.002
26.
Anderson
,
A.
,
1992
, “
A Note on Compressible Flow Through Orifices in Series
,”
J. Mech. Eng. Sci.
,
206
(
5
), pp.
361
366
.10.1243/PIME_PROC_1992_206_139_02
27.
Cho
,
H. H.
, and
Rhee
,
D. D.
,
2001
, “
Local Heat/Mass Transfer Measurement on the Effusion Plate in Impingement/Effusion Cooling Systems
,”
ASME J. Turbomach.
,
123
(
3
), pp.
601
608
.10.1115/1.1344904
28.
Chen
,
F.
,
Qian
,
J.
,
Chen
,
M.
,
Zhang
,
M.
,
Chen
,
L.
, and
Jin
,
Z.
,
2018
, “
Turbulent Compressible Flow Analysis on Multi-Stage High Pressure Reducing Valve
,”
Flow Meas. Instrum.
,
61
, pp.
26
37
.10.1016/j.flowmeasinst.2018.03.013
29.
Jin
,
Z.
,
Hou
,
C.
,
Qiu
,
C.
,
Zhang
,
J.
, and
Qian
,
J.
,
2020
, “
Transient Analysis on Pressure Stabilization of Spring Linked Two-Stage Perforated Plates
,”
Flow Meas. Instrum.
,
72
, p.
101692
.10.1016/j.flowmeasinst.2020.101692
30.
Qian
,
J.
,
Hou
,
C.
,
Wu
,
J.
,
Gao
,
Z.
, and
Jin
,
Z.
,
2019
, “
Aerodynamics Analysis of Superheated Steam Flow Through Multi-Stage Perforated Plates
,”
Int. J. Heat Mass Transfer
,
141
, pp.
48
57
.10.1016/j.ijheatmasstransfer.2019.06.061
31.
Tanner
,
P.
,
Gorman
,
J.
, and
Sparrow
,
E.
,
2019
, “
Flow–Pressure Drop Characteristics of Perforated Plates
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
11
), pp.
4310
4333
.10.1108/HFF-01-2019-0065
32.
Araoye
,
A.
,
Badr
,
M.
, and
Ahmed
,
H.
,
2017
, “
Investigation of Flow Through Multi-Stage Restricting Orifices
,”
Ann. Nucl. Energy
,
104
, pp.
75
90
.10.1016/j.anucene.2017.02.002
33.
ISA
, 1995, “
Considerations for Evaluating Control Valve Cavitation
,” Research Triangle Park, Durham, NC, Report No. ISA-RP75.23-1995.
34.
Erdal
,
A.
, and
Andersson
,
H. I.
,
1997
, “
Numerical Aspects of Flow Computation Through Orefices
,”
Flow Meas. Instrum.
,
8
(
1
), pp.
27
37
.10.1016/S0955-5986(97)00017-4
35.
Moosa
,
M.
, and
Hekmat
,
M. H.
,
2019
, “
Numerical Investigation of Turbulence Characteristics and Upstream Disturbance of Flow Through Standard and Multi-Hole Orifice Flowmeters
,”
Flow Meas. Instrum.
,
65
, pp.
203
218
.10.1016/j.flowmeasinst.2019.01.002
36.
Shah
,
M. S.
,
Joshi
,
J. B.
,
Kals
,
A. S.
,
Prasad
,
C. S. R.
, and
Shukla
,
D. S.
,
2012
, “
Analysis of Flow Through an Orifice Meter: CFD Simulation
,”
Chem. Eng. Sci.
,
71
, pp.
300
309
.10.1016/j.ces.2011.11.022
You do not currently have access to this content.