Abstract

The flashing flow in a Moby_Dick converging-diverging nozzle under pressurized hot water from 460.5 to 483.5 K is simulated using a homogeneous compressible water-vapor two-phase flow model. The kinematic and thermodynamic mass transfer are accessed using the cavitation model based on the Hertz–Knudsen–Langmuir equation. Our simplified thermodynamic model is coupled with the governing equations to capture the phase-change heat transfer. This numerical method proved its reliability through a comparison with available experimental data of flow parameters inside the nozzle. Consequently, the present numerical method shows good potential for simulating the flashing flow under pressurized hot water conditions. The satisfying prediction of averaged flow parameters with a slight improvement compared to reference numerical data is reproduced. The results confirm a noticeable impact of the thermodynamic effect on the mechanism of flashing flow, resulting in a considerable decrease in the flow temperature and the saturated vapor pressure. The flashing nonequilibrium is significantly decreased, forcing the flashing flow to be classified as the usual cavitation behavior and better suited to homogeneous model. While the temperature drop is highly dependent on evaporation, the thermodynamic suppression is influenced by the condensation. The suppression effect, unobserved in water at a lower temperature in previous studies, is noticeable for the pressurized hot water flow characterized by the cavitation mechanism. The vapor void fraction decreased considerably in the radial and axial directions as the water temperature rose to 483.5 K in this study.

References

1.
SaróSdy
,
L. R.
, and
Acosta
,
A. J.
,
1961
, “
Note on Observations of Cavitation in Different Fluids
,”
ASME J. Basic Eng.
,
83
(
3
), pp.
399
400
.10.1115/1.3658979
2.
Brennen
,
C. E.
,
1974
,
Hydrodynamics of Pump
,
Cambridge University Press
, New York.
3.
Franc
,
J.-P.
,
Rebattet
,
C.
, and
Coulon
,
A.
,
2004
, “
An Experimental Investigation of Thermal Effects in a Cavitating Inducer
,”
ASME J. Fluids Eng.
,
126
(
5
), pp.
716
723
.10.1115/1.1792278
4.
Franc
,
J.-P.
,
2006
, “
Physics and Control of Cavitation
,” Design and Analysis of High Speed Pump, Education notes, RTO, Neuilly-sur-Seine, France, Report No. RTO-EN-AVT-143.
5.
Sajben
,
M.
,
1961
, “
Adiabatic Flow of Flashing Liquids in Pipes
,”
ASME J. Basic Eng.
,
83
(
4
), pp.
619
630
.10.1115/1.3662281
6.
Wallis
,
G. B.
,
1980
, “
Critical Two-Phase Flow
,”
Int. J. Multiphase Flow
,
6
(
1–2
), pp.
97
112
.10.1016/0301-9322(80)90041-5
7.
Abuaf
,
N.
,
Wu
,
B. J. C.
,
Zimmer
,
G. A.
, and
Saha
,
P.
,
1981
,
A Study of Nonequilibrium Flashing of Water in a Converging-Diverging Nozzle: Volume 1 Experimental
,
U.S. Nuclear Regulatory Commission
,
Washington, DC
.
8.
Riznic
,
J. R.
, and
Ishii
,
M.
,
1989
, “
Bubble Number Density and Vapor Generation in Flashing Flow
,”
Int. J. Heat Mass Transfer
,
32
(
10
), pp.
1821
1833
.10.1016/0017-9310(89)90154-3
9.
Reitz
,
R. D.
,
1990
, “
A Photographic Study of Flashing Boiling Atomization
,”
Aerosol Sci. Technol.
,
12
(
3
), pp.
561
569
.10.1080/02786829008959370
10.
Asaka
,
A.
,
1992
, “
CATHARE – Qualification of Critical Flow Experiments
,” Centre d'Etudes Nucleaires, Grenoble, France, Report No. STR/LML/EM/92-108.
11.
Petkovsek
,
M.
, and
Dulaz
,
M.
,
2017
, “
Observing the Thermodynamic Effects in Cavitating Flow by IR Thermography
,”
Exp. Therm. Fluid Sci.
,
88
, pp.
450
460
.10.1016/j.expthermflusci.2017.07.001
12.
Richter
,
H. J.
,
1993
, “
Separated Two-Phase Flow Model: Application to Critical Two-Phase Flow
,”
Int. J. Multiphase Flows
,
9
, pp.
51
530
.https://doi.org/10.1016/0301-9322(83)90015-0
13.
Ishimoto
,
J.
,
Oike
,
M.
, and
Kamijo
,
K.
,
2001
, “
Numerical Analysis of Two-Phase Pipe Flow of Liquid Helium Using Multi-Fluid Model
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
811
818
.10.1115/1.1400747
14.
Mimouni
,
S.
,
Boucker
,
M.
,
Lavieville
,
J.
,
Guelfi
,
A.
, and
Bestion
,
A.
,
2008
, “
Modelling and Computation of Cavitating Flows With the NEPTUNE_CFD Code
,”
Nucl. Eng. Des.
,
238
(
3
), pp.
680
692
.10.1016/j.nucengdes.2007.02.052
15.
Marsh
,
C. A.
, and
O'Mahony
,
A. P.
,
2009
, “
Three-Dimensional Modeling of Industrial Flashing Flows
,”
Prog. Comput. Fluid Dyn.
,
9
(
6/7
), pp.
393
398
.10.1504/PCFD.2009.027370
16.
Liao
,
Y.
, and
Lucas
,
D.
,
2015
, “
3D CFD Simulation of Flashing Flows in a Converging-Diverging Nozzle
,”
Nucl. Eng. Des.
,
292
, pp.
149
163
.10.1016/j.nucengdes.2015.06.015
17.
Liao
,
Y.
, and
Lucas
,
D.
,
2017
, “
Possibilities and Limitations of CFD Simulation for Flashing Flow Scenarios in Nuclear Application
,”
Energies
,
10
(
1
) p.
139
.https://doi.org/10.3390/en10010139
18.
Liao
,
Y.
, and
Lucas
,
D.
,
2017
, “
Computational Modeling of Flashing Boiling Flows: A Literature Survey
,”
Int. J. Heat Mass Transfer
,
111
, pp.
246
265
.10.1016/j.ijheatmasstransfer.2017.03.121
19.
Iga
,
Y.
,
Nohmi
,
M.
,
Goto
,
A.
,
Shin
,
B. R.
, and
Ikohagi
,
T.
,
2003
, “
Numerical Study of Sheet Cavitation Breakoff Phenomenon on a Cascade Hydrofoil
,”
ASME J. Fluids Eng.
,
125
(
4
), pp.
643
651
.10.1115/1.1596239
20.
Karathanassis
,
I. K.
,
Koukouvinis
,
P.
, and
Gavaises
,
M.
,
2017
, “
Comparative Evaluation of Phase-Change Mechanisms for the Prediction of Flashing Flows
,”
Int. J. Multiphase Flow
,
95
, pp.
257
270
.10.1016/j.ijmultiphaseflow.2017.06.006
21.
Bilicki
,
Z.
, and
Kestin
,
J.
,
1990
, “
Physical Aspects of the Relaxation Model in Two-Phase Flow
,”
Proc. R. Soc. Lond. A
,
428
, pp.
379
397
.https://doi.org/10.1098/rspa.1990.0040
22.
Schmidt
,
D. P.
,
Gopalakrishnan
,
H.
, and
Jasak
,
H.
,
2010
, “
Multi-Dimensional Simulation of Thermal Non-Equilibrium Channel Flow
,”
Int. J. Multiphase Flows
,
36
(
4
), pp.
284
292
.10.1016/j.ijmultiphaseflow.2009.11.012
23.
Quang
,
D. L.
,
Mereu
,
R.
,
Besagni
,
G.
,
Dossena
,
V.
, and
Inzoli
,
F.
,
2018
, “
Computational Fluid Dynamics Modeling of Flashing Flow in Convergent-Divergent Nozzle
,”
ASME J. Fluids Eng.
,
140
(
10
), p.
101102
.https://doi.org/10.1115/1.4039908
24.
Mei-Shan
,
J.
,
Cong-Tu
,
H.
, and
Warn-Gyu
,
P.
,
2017
, “
Numerical Study on Heat Transfer Effect of Cavitating and Flashing Flows Based on Homogeneous Mixture Model
,”
Int. J. Heat Mass Transfer
,
109
, pp.
1068
1083
.10.1016/j.ijheatmasstransfer.2017.02.080
25.
Hosangadi
,
A.
, and
Ahuja
,
V.
,
2005
, “
Numerical Study of Cavitation in Cryogenic Fluids
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
267
281
.10.1115/1.1883238
26.
Utturkar
,
Y.
,
Wu
,
J.
,
Wang
,
G.
, and
Shyy
,
W.
,
2005
, “
Recent Progress in Modeling of Cryogenic Cavitation for Liquid Rocket Propulsion
,”
Prog. Aerosp. Sci.
,
41
(
7
), pp.
558
608
.10.1016/j.paerosci.2005.10.002
27.
Iga
,
Y.
,
Ochiai
,
N.
,
Yoshida
,
Y.
, and
Ikohagi
,
T.
,
2009
, “
Numerical Investigation of Thermodynamic Effect on Unsteady Cavitation in Cascade
,”
Seventh International Symposium on Cavitation
, Ann Arbor, MI, CAV2009-No.78.
28.
Tsuda
,
S.
,
Tani
,
N.
, and
Yamanishi
,
N.
,
2012
, “
Development and Validation of a Reduced Critical Radius Model for Cryogenic Cavitation
,”
ASME J. Fluids Eng.
,
134
(
5
), p.
051301
.10.1115/1.4006469
29.
Anh
,
D. L.
,
Okajima
,
J.
, and
Iga
,
Y.
,
2019
, “
Modification of Energy Equation for Homogeneous Cavitation Simulation With Thermodynamic Effect
,”
ASME J. Fluids Eng.
,
141
(
8
), p.
081102
.10.1115/1.4042257
30.
Narayanan
,
C.
,
2021
, “
Numerical Simulation of Flashing Using a Pressure-Based Compressible Multiphase Approach and a Thermodynamic Cavitation Model
,”
Int. J. Multiphase Flow
,
135
, p.
103511
.10.1016/j.ijmultiphaseflow.2020.103511
31.
Anh
,
D. L.
,
Okajima
,
J.
, and
Iga
,
Y.
,
2019
, “
Numerical Simulation Study of Cavitation in Liquefied Hydrogen
,”
Cryogenics
,
101
, pp.
29
35
.10.1016/j.cryogenics.2019.04.010
32.
Wilcox
,
D. C.
,
1994
,
Turbulence Modeling for CFD
,
DCW Industries, Inc
., La Canada, CA.
33.
Singhal
,
A.
,
Athavale
,
M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
34.
Yee
,
H. C.
,
1987
, “
Upwind and Symmetric Shock - Capturing Schemes
,” NASA Tech. Memorandum, Washington, DC, Report No. 89464.
35.
Hoffmann
,
A. K.
, and
Chiang
,
S. T.
,
2000
, “
Computational Fluid Dynamics
Volume
II
4th Eddition,”
A Publication of Engineering Education System
,
Wichita, KS
, Report No. 67208
–1078.
36.
Allmaras
,
S. R.
,
Johnson
,
F. T.
, and
Spalart
,
P. R.
,
2012
, “
Modification and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model
,” ICCFD7-1902, Seventh International Conference on Computational Fluid Dynamics, Big Island, HI, July 9–13, Paper No.
ICCFD7-1902
.https://www.iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
37.
Yee
,
H. C.
,
Sandham
,
N. D.
, and
Djomehri
,
M. J.
,
1999
, “
Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic-Based Filters
,”
J. Comput. Phys.
,
150
(
1
), pp.
199
238
.10.1006/jcph.1998.6177
38.
Herbert
,
S.
,
2006
,
Gasdynamic Aspects of Two-Phase Flow
,
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
.
39.
Cervone
,
A.
,
Bramanti
,
C.
,
Rapposelli
,
E.
, and
Agostino
,
L.
,
2006
, “
Thermal Cavitation Experiments on a NACA0015 Hydrofoil
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
326
331
.10.1115/1.2169808
40.
Anh
,
D. L.
,
Hoang
,
P. T.
, and
Hung
,
T. T.
,
2021
, “
Assessment of a Homogeneous Model for Simulating a Cavitating Flow in Water Under a Wide Range of Temperatures
,”
ASME J. Fluids Eng.
,
143
(
10
), p.
101204
.10.1115/1.4051078
You do not currently have access to this content.