Abstract

The energy harvesting performance of thick oscillating airfoils is predicted using an inviscid discrete vortex model (DVM). National Advisory Committee for Aeronautics (NACA) airfoils with different leading-edge geometries are modeled that undergo sinusoidal heaving and pitching with reduced frequencies, k=fc/U, in the range 0.060.14, where f is the heaving frequency of the foil, c is the chord length, and U is the freestream velocity. The airfoil pitches about the midchord with heaving and pitching amplitudes of h0=0.5c and θ0=70deg, respectively, known to be in the range of peak energy harvesting efficiencies. A vortex shedding initiation criteria is proposed based on the transient local wall stress distribution determined from computational fluid dynamics (CFD) simulations and incorporates both timing and location of leading-edge separation. The scaled shedding times are shown to be predicted over the range of reduced frequencies using a timescale based on the leading-edge shear velocity and radius of curvature. The convection velocity of the shed vortices is also modeled based on the reduced frequency to better capture the dynamics of the leading-edge vortex. An empirical trailing-edge separation correction is applied to the transient force results using the effective angle of attack modified to include the pitching component. Impulse theory is applied to the DVM to calculate the transient lift force and compares well with the CFD simulations. Results show that the power output increases with increasing airfoil thickness and is most notable at higher reduced frequencies where the power output efficiency is highest.

References

1.
Zhu
,
Q.
,
2011
, “
Optimal Frequency for Flow Energy Harvesting of a Flapping Foil
,”
J. Fluid Mech.
,
675
, pp.
495
517
.10.1017/S0022112011000334
2.
Kinsey
,
T.
, and
Dumas
,
G.
,
2012
, “
Computational Fluid Dynamics Analysis of a Hydrokinetic Turbine Based on Oscillating Hydrofoils
,”
ASME J. Fluids Eng.
,
134
(
2
), p.
021104
.10.1115/1.4005841
3.
Xiao
,
Q.
,
Liao
,
W.
,
Yang
,
S.
, and
Peng
,
Y.
,
2012
, “
How Motion Trajectory Affects Energy Extraction Performance of a Biomimic Energy Generator With an Oscillating Foil?
,”
Renewable Energy
,
37
(
1
), pp.
61
75
.10.1016/j.renene.2011.05.029
4.
Liu
,
W.
,
Xiao
,
Q.
, and
Cheng
,
F.
,
2013
, “
A Bio-Inspired Study on Tidal Energy Extraction With Flexible Flapping Wings
,”
Bioinspiration Biomimetics
,
8
(
3
), p.
036011
.10.1088/1748-3182/8/3/036011
5.
Young
,
J.
,
Lai
,
J. C.
, and
Platzer
,
M. F.
,
2014
, “
A Review of Progress and Challenges in Flapping Foil Power Generation
,”
Prog. Aerosp. Sci.
,
67
, pp.
2
28
.10.1016/j.paerosci.2013.11.001
6.
Xiao
,
Q.
, and
Zhu
,
Q.
,
2014
, “
A Review on Flow Energy Harvesters Based on Flapping Foils
,”
J. Fluids Struct.
,
46
, pp.
174
191
.10.1016/j.jfluidstructs.2014.01.002
7.
Ramesh
,
K.
,
Granlund
,
K.
,
Ol
,
M. V.
,
Gopalarathnam
,
A.
, and
Edwards
,
J. R.
,
2018
, “
Leading-Edge Flow Criticality as a Governing Factor in Leading-Edge Vortex Initiation in Unsteady Airfoil Flows
,”
Theor. Comput. Fluid Dyn.
,
32
(
2
), pp.
109
136
.10.1007/s00162-017-0442-0
8.
Wu
,
J.
,
Chen
,
Y.
, and
Zhao
,
N.
,
2015
, “
Role of Induced Vortex Interaction in a Semi-Active Flapping Foil Based Energy Harvester
,”
Phys. Fluids
,
27
(
9
), p.
093601
.10.1063/1.4930028
9.
Kim
,
D.
,
Strom
,
B.
,
Mandre
,
S.
, and
Breuer
,
K.
,
2017
, “
Energy Harvesting Performance and Flow Structure of an Oscillating Hydrofoil With Finite Span
,”
J. Fluids Struct.
,
70
, pp.
314
326
.10.1016/j.jfluidstructs.2017.02.004
10.
Su
,
Y.
, and
Breuer
,
K.
,
2019
, “
Resonant Response and Optimal Energy Harvesting of an Elastically Mounted Pitching and Heaving Hydrofoil
,”
Phys. Rev. Fluids
,
4
(
6
), p.
064701
.10.1103/PhysRevFluids.4.064701
11.
McKinney
,
W.
, and
DeLaurier
,
J.
,
1981
, “
Wingmill: An Oscillating-Wing Windmill
,”
J. Energy
,
5
(
2
), pp.
109
115
.10.2514/3.62510
12.
Kinsey
,
T.
, and
Dumas
,
G.
,
2008
, “
Parametric Study of an Oscillating Airfoil in a Power-Extraction Regime
,”
AIAA J.
,
46
(
6
), pp.
1318
1330
.10.2514/1.26253
13.
Onoue
,
K.
, and
Breuer
,
K. S.
,
2016
, “
Vortex Formation and Shedding From a Cyber-Physical Pitching Plate
,”
J. Fluid Mech.
,
793
, pp.
229
247
.10.1017/jfm.2016.134
14.
Xie
,
Y.
,
Lu
,
K.
, and
Zhang
,
D.
,
2014
, “
Investigation on Energy Extraction Performance of an Oscillating Foil With Modified Flapping Motion
,”
Renewable Energy
,
63
, pp.
550
557
.10.1016/j.renene.2013.10.029
15.
Polhamus
,
E. C.
,
1971
, “
Predictions of Vortex-Lift Characteristics by a Leading-Edge Suctionanalogy
,”
J. Aircr.
,
8
(
4
), pp.
193
199
.10.2514/3.44254
16.
Veilleux
,
J.-C.
, and
Dumas
,
G.
,
2017
, “
Numerical Optimization of a Fully-Passive Flapping-Airfoil Turbine
,”
J. Fluids Struct.
,
70
, pp.
102
130
.10.1016/j.jfluidstructs.2017.01.019
17.
Ashraf
,
M.
,
Young
,
J.
,
Lai
,
J. S.
, and
Platzer
,
M.
,
2011
, “
Numerical Analysis of an Oscillating-Wing Wind and Hydropower Generator
,”
AIAA J.
,
49
(
7
), pp.
1374
1386
.10.2514/1.J050577
18.
Wang
,
Z.
,
Du
,
L.
,
Zhao
,
J.
,
Thompson
,
M.
, and
Sun
,
X.
,
2020
, “
Flow-Induced Vibrations of a Pitching and Plunging Airfoil
,”
J. Fluid Mech.
,
885
, p. A36.10.1017/jfm.2019.996
19.
Kinsey
,
T.
,
Dumas
,
G.
,
Lalande
,
G.
,
Ruel
,
J.
,
Mehut
,
A.
,
Viarouge
,
P.
,
Lemay
,
J.
, and
Jean
,
Y.
,
2011
, “
Prototype Testing of a Hydrokinetic Turbine Based on Oscillating Hydrofoils
,”
Renewable Energy
,
36
(
6
), pp.
1710
1718
.10.1016/j.renene.2010.11.037
20.
Siala
,
F.
, and
Liburdy
,
J. A.
,
2015
, “
Energy Harvesting of a Heaving and Forward Pitching Wing With a Passively Actuated Trailing Edge
,”
J. Fluids Struct.
,
57
, pp.
1
14
.10.1016/j.jfluidstructs.2015.05.007
21.
Siala
,
F. F.
, and
Liburdy
,
J. A.
,
2020
, “
Power Estimation of Flapping Foil Energy Harvesters Using Vortex Impulse Theory
,”
Renewable Energy
,
154
, pp.
894
902
.10.1016/j.renene.2020.03.067
22.
Siala
,
F. F.
,
2019
, “
Experimental Investigations of the Unsteady Aerodynamics of Oscillating Airfoils Operating in the Energy Harvesting Regime
,” Ph.D. thesis,
Oregon State University
, Corvallis, OR.
23.
Totpal
,
A. D.
,
Siala
,
F. F.
, and
Liburdy
,
J. A.
,
2018
, “
Energy Harvesting of an Oscillating Foil at Low Reduced Frequencies With Rigid and Passively Deforming Leading Edge
,”
J. Fluids Struct.
,
82
, pp.
329
342
.10.1016/j.jfluidstructs.2018.04.022
24.
Siala
,
F. F.
,
Kamrani Fard
,
K.
, and
Liburdy
,
J. A.
,
2020
, “
Experimental Study of Inertia-Based Passive Flexibility of a Heaving and Pitching Airfoil Operating in the Energy Harvesting Regime
,”
Phys. Fluids
,
32
(
1
), p.
017101
.10.1063/1.5119700
25.
Wagner
,
H.
,
1924
, “
Über Die Entstehung Des Dynamischen Auftriebes Von Tragflügeln
,” Dynamischer Auftrieb von Tragfftigeln, Band 5, Heft, pp.
17
34
.
26.
Theodorsen
,
T.
, and
Mutchler
,
W.
,
1935
, “
General Theory of Aerodynamic Instability and the Mechanism of Flutter
,” NACA Report No. 496.
27.
Boutet
,
J.
, and
Dimitriadis
,
G.
,
2018
, “
Unsteady Lifting Line Theory Using the Wagner Function for the Aerodynamic and Aeroelastic Modeling of 3D Wings
,”
Aerospace
,
5
(
3
), p.
92
.10.3390/aerospace5030092
28.
Bird
,
H. J.
,
Otomo
,
S.
,
Ramesh
,
K. K.
, and
Viola
,
I. M.
,
2019
, “
A Geometrically Non-Linear Time-Domain Unsteady Lifting-Line Theory
,”
AIAA Scitech 2019 Forum
, San Diego, CA, Jan. 7–11, p.
1377
.
29.
Ramesh
,
K.
,
Gopalarathnam
,
A.
,
Granlund
,
K.
,
Ol
,
M. V.
, and
Edwards
,
J. R.
,
2014
, “
Discrete-Vortex Method With Novel Shedding Criterion for Unsteady Aerofoil Flows With Intermittent Leading-Edge Vortex Shedding
,”
J. Fluid Mech.
,
751
, pp.
500
538
.10.1017/jfm.2014.297
30.
Sharma
,
A.
, and
Visbal
,
M.
,
2019
, “
Numerical Investigation of the Effect of Airfoil Thickness on Onset of Dynamic Stall
,”
J. Fluid Mech.
,
870
, pp.
870
900
.10.1017/jfm.2019.235
31.
Heine
,
B.
,
Mulleners
,
K.
,
Joubert
,
G.
, and
Raffel
,
M.
,
2013
, “
Dynamic Stall Control by Passive Disturbance Generators
,”
AIAA J.
,
51
(
9
), pp.
2086
2097
.10.2514/1.J051525
32.
Mulleners
,
K.
, and
Raffel
,
M.
,
2012
, “
The Onset of Dynamic Stall Revisited
,”
Exp. Fluids
,
52
(
3
), pp.
779
793
.10.1007/s00348-011-1118-y
33.
Müller-Vahl
,
H. F.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
, and
Greenblatt
,
D.
,
2016
, “
Dynamic Stall Control Via Adaptive Blowing
,”
Renewable Energy
,
97
, pp.
47
64
.10.1016/j.renene.2016.05.053
34.
Larsen
,
J. W.
,
Nielsen
,
S. R.
, and
Krenk
,
S.
,
2007
, “
Dynamic Stall Model for Wind Turbine Airfoils
,”
J. Fluids Struct.
,
23
(
7
), pp.
959
982
.10.1016/j.jfluidstructs.2007.02.005
35.
Dabiri
,
J. O.
,
2009
, “
Optimal Vortex Formation as a Unifying Principle in Biological Propulsion
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
17
33
.10.1146/annurev.fluid.010908.165232
36.
Gharib
,
M.
,
Rambod
,
E.
, and
Shariff
,
K.
,
1998
, “
A Universal Time Scale for Vortex Ring Formation
,”
J. Fluid Mech.
,
360
, pp.
121
140
.10.1017/S0022112097008410
37.
Siala
,
F. F.
, and
Liburdy
,
J. A.
,
2019
, “
Leading-Edge Vortex Dynamics and Impulse-Based Lift Force Analysis of Oscillating Airfoils
,”
Exp. Fluids
,
60
(
10
), p.
157
.10.1007/s00348-019-2803-5
38.
Katz
,
J.
, and
Plotkin
,
A.
,
2001
,
Low-Speed Aerodynamics
, Vol.
13
,
Cambridge University Press
, New York.
39.
Ansari
,
S.
,
Żbikowski
,
R.
, and
Knowles
,
K.
,
2006
, “
Non-Linear Unsteady Aerodynamic Model for Insect-Like Flapping Wings in the Hover Part 1: Methodology and Analysis
,”
Proc. Inst. Mech. Eng., Part G
,
220
(
2
), pp.
61
83
.10.1243/09544100JAERO49
40.
Kamrani Fard
,
K.
,
Ngo
,
V.
, and
Liburdy
,
J. A.
,
2021
, “
A Leading-Edge Vortex Initiation Criteria for Large Amplitude Foil Oscillations Using a Discrete Vortex Model
,”
Phys. Fluids
,
33
(
11
), p.
115123
.10.1063/5.0065097
41.
Chorin
,
A. J.
,
1973
, “
Numerical Study of Slightly Viscous Flow
,”
J. Fluid Mech.
,
57
(
4
), pp.
785
796
.10.1017/S0022112073002016
42.
Leonard
,
A.
,
1980
, “
Vortex Methods for Flow Simulation
,”
J. Comput. Phys.
,
37
(
3
), pp.
289
335
.10.1016/0021-9991(80)90040-6
43.
Li
,
J.
, and
Wu
,
Z.-N.
,
2016
, “
A Vortex Force Study for a Flat Plate at High Angle of Attack
,”
J. Fluid Mech.
,
801
, pp.
222
249
.10.1017/jfm.2016.349
44.
Leishman
,
J. G.
, and
Beddoes
,
T.
,
1989
, “
A Semi-Empirical Model for Dynamic Stall
,”
J. Am. Helicopter Soc.
,
34
(
3
), pp.
3
17
.10.4050/JAHS.34.3.3
45.
Fan
,
Y.
,
1997
, “
Identification of an Unsteady Aerodynamic Model Up to High Angle of Attack Regime
,” Ph.D. thesis,
Virginia Polytechnic Institute and State University
, Blacksburg, VA.
46.
Liu
,
Z.
,
Lai
,
J. C.
,
Young
,
J.
, and
Tian
,
F.-B.
,
2017
, “
Discrete Vortex Method With Flow Separation Corrections for Flapping-Foil Power Generators
,”
AIAA J.
,
55
(
2
), pp.
410
418
.10.2514/1.J055267
47.
Bauchau
,
O. A.
,
2007
,
Dymore User's Manual
,
Georgia Institute of Technology
,
Atlanta, GA
.
48.
Goman
,
M.
, and
Khrabrov
,
A.
,
1994
, “
State-Space Representation of Aerodynamic Characteristics of an Aircraft at High Angles of Attack
,”
J. Aircr.
,
31
(
5
), pp.
1109
1115
.10.2514/3.46618
49.
Ngo
,
V.
,
2021
, “
Leading Edge Separation Analysis of Oscillating Airfoil Energy Harvesters
,” M.S. thesis,
Oregon State University
,
Corvallis, OR
.
50.
Stevens
,
P.
, and
Babinsky
,
H.
,
2017
, “
Experiments to Investigate Lift Production Mechanisms on Pitching Flat Plates
,”
Exp. Fluids
,
58
(
1
), pp.
1
17
.10.1007/s00348-016-2290-x
51.
Kamrani Fard
,
K.
, and
Liburdy
,
J. A.
,
2020
, “
Discrete Vortex Modeling of a Flapping Foil Energy Harvester With Lev Shedding Criterion
,”
ASME
Paper No. IMECE2020-24216. 10.1115/IMECE2020-24216
52.
Babinsky
,
H.
,
Stevens
,
R. J.
,
Jones
,
A. R.
,
Bernal
,
L. P.
, and
Ol
,
M. V.
,
2016
, “
Low Order Modelling of Lift Forces for Unsteady Pitching and Surging Wings
,”
AIAA
Paper No. 2016-0290.10.2514/6.2016-0290
You do not currently have access to this content.