Abstract

Air-entrainment from surface vortex at critical submergence for hydraulic intakes adversely affects the withdrawal efficiency and intake performance. In this study, flow at the lateral dual square bottom intake placed in a row operating under uniform approach flow is numerically simulated. The dual intakes are subjected to perpendicular approach flow making the withdrawal condition more complex. The interface of the air–water phase is tracked using the volume of fluid (VOF) model, both coupled and decoupled with the level-set method with different spatial discretization methods for identifying the best interface interpolation. This study is focused on the development of a methodology for the determination of critical submergence for dual intakes numerically. Surface vortex causing air-entrainment at lateral dual intake was identified using three distinct approaches and a novel methodology involving the use of volume fraction study combined with a swirling-strength based vortex detection mechanism is proposed to compute the critical submergence for the safe operation of the intakes. Further, the effect of intake pipe blockage on the critical submergence is studied using differential intake protrusions and identified that a differential protrusion of the downstream intake can reduce the critical submergence with an enhanced withdrawal capacity of the upstream intake. The computed critical submergence is validated using experimental results on lateral dual intakes and found to be within ±10% error. The results of this study will be helpful to practicing engineers in the rational design of hydraulic intakes for various diversion projects.

References

1.
Yildirim
,
N.
,
Kocabas
,
F.
, and
Gulcan
,
S. C.
,
2000
, “
Flow Boundary Effects on Critical Submergence of an Intake Pipe
,”
J. Hydraul. Eng.
,
126
(
4
), pp.
288
297
.10.1061/(ASCE)0733-9429(2000)126:4(288)
2.
Jain
,
A. K.
,
Garde
,
R. J.
, and
Ranga Raju
,
K. G.
,
1978
, “
Vortex Formation at Vertical Pipe Intakes
,”
ASCE J. Hydraul. Div.
,
104
(
10
), pp.
1429
1445
.10.1061/JYCEAJ.0005087
3.
Odgaard
,
A. J.
,
1986
, “
Free Surface Air Core Vortex
,”
J. Hydraul. Eng.
,
112
(
7
), pp.
610
620
.10.1061/(ASCE)0733-9429(1986)112:7(610)
4.
Gulliver
,
J. S.
, and
Rindels
,
A. J.
,
1987
, “
Weak Vortices at Vertical Intakes
,”
J. Hydraul. Eng.
,
113
(
9
), pp.
1101
1116
.10.1061/(ASCE)0733-9429(1987)113:9(1101)
5.
Kocabas
,
F.
, and
Yildirim
,
N.
,
2002
, “
Effect of Circulation on Critical Submergence of an Intake Pipe
,”
J. Hydraul. Res.
,
40
(
6
), pp.
741
752
.10.1080/00221680209499920
6.
Suerich-Gulick
,
F.
,
Gaskin
,
S. J.
,
Villeneuve
,
M.
, and
Parkinson
,
E.
,
2014
, “
Free Surface Intake Vortices: Scale Effects Due to Surface Tension and Viscosity
,”
J. Hydraul. Res.
,
52
(
4
), pp.
513
522
.10.1080/00221686.2014.905503
7.
Tastan
,
K.
, and
Yildirim
,
N.
,
2017
, “
Effective Intake for Critical Submergence in the Case of More Than One Intake
,”
KSCE J. Civ. Eng.
,
21
, pp.
1004
1008
.10.1007/s12205-016-0073-9
8.
Khanarmuei
,
M.
,
Rahimzadeh
,
H.
, and
Sarkardeh
,
H.
,
2019
, “
Effect of Dual Intake Direction on Critical Submergence and Vortex Strength
,”
J. Hydraul. Res.
,
57
(
2
), pp.
272
279
.10.1080/00221686.2018.1459896
9.
Hashid
,
M.
,
Hussain
,
A.
, and
Ahmad
,
Z.
,
2021
, “
Critical Submergence for Side Circular Intake With and Without Bellmouth Transition
,”
J. Hydraul. Res.
,
59
(
1
), pp.
136
147
.10.1080/00221686.2020.1744749
10.
Hashid
,
M.
, and
Ahmad
,
Z.
,
2022
, “
Critical Submergence for Horizontal Dual Water Intakes Under Perpendicular Uniform Approach Flow
,”
J. Hydraul. Eng.
,
148
(
10
), p.
04022020
.10.1061/(ASCE)HY.1943-7900.0002016
11.
Gogolin
,
C.
,
Carvalho
,
R. F.
,
Bung
,
D. B.
, and
Matos
,
J. S.
,
2013
, “
Experimental and Numerical Investigation of Steady and Unsteady Flows in Roughened Channels With Cross Beams
,”
Proceedings of the 35th IAHR World Congress
,
Chengdu, China
, Sept. 8–13, Paper No. 14533.https://www.researchgate.net/publication/314419971_Experimental_and_numerical_investigation_of_steady_and_unsteady_flows_in_roughened_channels_with_cross_beams
12.
Constantinescu
,
G.
, and
Patel
,
V.
,
1998
, “
Numerical Model for Simulation of Pump-Intake Flow and Vortices
,”
J. Hydraul. Eng.
,
124
, pp.
123
134
.10.1061/(ASCE)0733-9429(1998)124:2(123)
13.
Okamura
,
T.
,
Kamemoto
,
K.
, and
Matsui
,
J.
,
2007
, “
CFD Prediction and Model Experiment on Suction Vortices in Pump Sump
,”
The 9th Asian Conference on Fluid Machinery
,
Jeju, Korea
, Oct. 16–19, pp.
1
10
.https://www.researchgate.net/publication/36425378_CFD_prediction_and_model_experiment_on_suction_vortices_in_pump_sump
14.
Pandazis
,
P.
, and
Blomeling
,
F.
,
2014
, “
Investigation of the Critical Submergence at Pump Intakes Based on Multiphase CFD Calculations
,”
Adv. Fluid Mech.
,
82
, pp.
143
152
, https://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/82/27283
15.
Qian
,
Z. D.
,
Wu
,
P. F.
,
Guo
,
Z. W.
, and
Huai
,
W. X.
,
2016
, “
Numerical Simulation of Air Entrainment and Suppression in Pump Sump
,”
Sci. China: Technol. Sci.
,
59
, pp.
1847
1855
.10.1007/s11431-016-0237-8
16.
Guo
,
Z. W.
,
Chen
,
F.
,
Wu
,
P. F.
, and
Qian
,
Z. D.
,
2017
, “
Three-Dimensional Simulation of Air Entrainment in a Sump Pump
,”
J. Hydraul. Eng.
,
143
(
9
), p.
04017024
.10.1061/(ASCE)HY.1943-7900.0001321
17.
Guo
,
Q.
,
Huang
,
X.
,
Qiu
,
B.
,
Feng
,
X.
, and
Luo
,
C.
,
2020
, “
The Formation of the Steady and Unsteady Air-Entrained Vortices in Pump Sump
,”
Int. J. Multiphase Flow
,
129
, p.
103312
.10.1016/j.ijmultiphaseflow.2020.103312
18.
Guo
,
M.
,
Tang
,
X.
,
Li
,
X.
,
Wang
,
F.
, and
Shi
,
X.
,
2021
, “
A Preliminary Study on the Simulation of Vortex Flow in Pump Intake Based on LBM-VOF-LES Combined Model
,”
ASME J. Fluids Eng.
,
143
(
5
), p.
051502
.10.1115/1.4049684
19.
Huang
,
X.
,
Guo
,
Q.
,
Qiu
,
B.
, and
Feng
,
X.
,
2020
, “
Prediction of Air-Entrained Vortex in Pump Sump: Influence of Turbulence Models and Interface-Tracking Methods
,”
J. Hydraul. Eng.
,
146
(
4)
, p.
04020010
.10.1061/(ASCE)HY.1943-7900.0001708
20.
Huang
,
X.
,
Guo
,
Q.
,
Tao
,
F.
,
Xurui
,
C.
, and
Qiu
,
B.
,
2022
, “
Air-Entrainment in Hydraulic Intakes With a Vertical Pipe: The Mechanism and Influence of Pipe Offset
,”
Int. J. Multiphase Flow
,
146
, p.
103866
.10.1016/j.ijmultiphaseflow.2021.103866
21.
Zi
,
D.
,
Shen
,
L.
,
Wang
,
F.
,
Wang
,
B.
, and
Yao
,
Z.
,
2022
, “
Characteristics and Mechanisms of Air-Core Vortex Meandering in a Free-Surface Intake Flow
,”
Int. J. Multiphase Flow
,
152
, p.
104070
.10.1016/j.ijmultiphaseflow.2022.104070
22.
Ansys® Fluent® 16.1,
2015
, “
Help System, Theory Guide
,” ANSYS Inc., Cannonsburg, PA.
23.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
24.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
, pp.
201
225
.10.1016/0021-9991(81)90145-5
25.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.10.1006/jcph.1994.1155
26.
Yang
,
Z.
,
Lu
,
X. H.
,
Guo
,
X.
,
Liu
,
Y.
, and
Shen
,
L.
,
2017
, “
Numerical Simulation of Sediment Suspension and Transport Under Plunging Breaking Waves
,”
Comput. Fluids
,
158
, pp.
57
71
.10.1016/j.compfluid.2017.03.014
27.
Zi
,
D.
,
Xuan
,
A.
,
Wang
,
F.
, and
Shen
,
L.
,
2020
, “
Numerical Study of Mechanisms of Air-Core Vortex Evolution in an Intake Flow
,”
Int. J. Heat Fluid Flow
,
81
, p.
108517
.10.1016/j.ijheatfluidflow.2019.108517
28.
Sussman
,
M.
, and
Puckett
,
E. G.
,
2000
, “
A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
162
(
2
), pp.
301
337
.10.1006/jcph.2000.6537
29.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
30.
Filonovich
,
M. S.
,
Azevedo
,
R.
,
Rojas-Solorzano
,
L. R.
, and
Leal
,
J. B.
,
2013
, “
Credibility Analysis of Computational Fluid Dynamic Simulations for Compound Channel Flow
,”
J. Hydroinf.
,
15
(
3
), pp.
926
938
.10.2166/hydro.2013.187
31.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
, pp.
40
65
.10.1016/0021-9991(86)90099-9
32.
Albadawi
,
A.
,
Donoghue
,
D. B.
,
Robinson
,
A. J.
,
Murray
,
D. B.
, and
Delaure
,
Y. M. C.
,
2014
, “
On the Assessment of a VOF Based Compressive Interface Capturing Scheme for the Analysis of Bubble Impact on and Bounce From a Flat Horizontal Surface
,”
Int. J. Multiphase Flow
,
65
, pp.
82
97
.10.1016/j.ijmultiphaseflow.2014.05.017
33.
Denner
,
F.
, and
Van Wachem
,
B. G. M.
,
2014
, “
Compressive VOF Method With Skewness Correction to Capture Sharp Interfaces on Arbitrary Meshes
,”
J. Comput. Phys.
,
279
, pp.
127
144
.10.1016/j.jcp.2014.09.002
34.
Shaughnessy
,
E. J.
,
Katz
,
I. M.
, and
Schaffer
,
J. P.
,
2015
,
Introduction to Fluid Mechanics
,
Oxford University Press
,
New York
.
35.
Webb
,
G.
,
2018
, Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws (
Lecture Notes in Physics
, Vol. 946),
Springer
,
Cham, Switzerland
.
36.
Carriveau
,
E. C.
, and
Kopp
,
G. A.
,
2002
, “
Properties of Swirling and Non-Swirling Flows at Submerged Water Intakes
,”
Proceedings of the 30th Annual Conference of the Canadian Society for Civil Engineering
,
Montreal, Canada
, June 5–8, pp.
107
116
.
37.
Chen
,
H.
,
Li
,
D.
,
Bai
,
R.
, and
Wang
,
X.
,
2018
, “
Comparison of Swirling Strengths Derived From Two- and Three-Dimensional Velocity Fields in Channel Flow
,”
AIP Adv.
,
8
, p.
055302
.10.1063/1.5023533
38.
Chakraborty
,
P.
,
Balachandar
,
S.
, and
Adrian
,
R. J.
,
2005
, “
On the Relationships Between Local Vortex Identification Schemes
,”
J. Fluid Mech.
,
535
, pp.
189
214
.10.1017/S0022112005004726
39.
Hargreaves
,
D. M.
,
Morvan
,
H. P.
, and
Wright
,
N. G.
,
2007
, “
Validation of the Volume of Fluid Method for Free Surface Calculation: The Broad-Crested Weir
,”
Eng. Appl. Comput. Fluid Mech.
,
1
(
2
), pp.
136
146
.10.1080/19942060.2007.11015188
40.
Rajendran
,
V. P.
,
Constantinescu
,
S. G.
, and
Patel
,
V. C.
,
1999
, “
Experimental Validation of Numerical Model of Flow in Pump-Intake Bays
,”
J. Hydraul. Eng.
,
125
(
11
), pp.
1119
1125
.10.1061/(ASCE)0733-9429(1999)125:11(1119)
You do not currently have access to this content.