Abstract

The design of supersonic and hypersonic air-breathing vehicles is influenced by the transition between the Mach reflection (MR) and regular reflection (RR) phenomena. The purpose of this study is to investigate the dynamic transition of unsteady supersonic flow from MR to RR over a two-dimensional wedge numerically. The trailing edge of the wedge moves downstream along the x-direction with a velocity, V(t) at a freestream Mach number of 3. An unsteady compressible inviscid flow solver is used to simulate the phenomenon. The Arbitrary Lagrangian–Eulerian (ALE) technique is applied to deform the mesh during the wedge motion. The dynamic transition from MR to RR is defined by two criteria, the sonic and the von Neumann. Moreover, the lag in the dynamic transition from the steady-state condition is studied using various nondimensional angular velocities, κ, in the range of [0.1-2]. The lag effect in the shock system is remarkable at the high values of κ greater than 1.5. Furthermore, the dynamic transition from MR to RR happens below the dual solution domain (DSD) because the shock is upstream curved during the wedge motion.

References

1.
Jagadeesh
,
G.
,
2008
, “
Industrial Applications of Shock Waves
,”
Proc. Inst. Mech. Eng., Part G
,
222
(
5
), pp.
575
583
.10.1243/09544100JAERO306
2.
Chin
,
C.
,
Li
,
M.
,
Harkin
,
C.
,
Rochwerger
,
T.
,
Chan
,
L.
,
Ooi
,
A.
,
Risborg
,
A.
, and
Soria
,
J.
,
2013
, “
Investigation of the Flow Structures in Supersonic Free and Impinging Jet Flows
,”
ASME J. Fluids Eng.
,
135
(
3
), p.
031202
.10.1115/1.4023190
3.
Rita
,
A.
,
Sivakumar
,
A.
, and
Martin Britto Dhas
,
S.
,
2019
, “
Influence of Shock Waves on Structural and Morphological Properties of Copper Oxide Nps for Aerospace Applications
,”
J. Nanostruct. Chem.
,
9
(
3
), pp.
225
230
.10.1007/s40097-019-00313-0
4.
Khan
,
M. R. A.
, and
Hasan
,
A. T.
,
2021
, “
Design and Evaluation of Generic Bump for Flow Control in a Supersonic Inlet Isolator
,”
ASME J. Fluids Eng.
,
143
(
5
), p.
051207
.10.1115/1.4049677
5.
Tripathi
,
M.
,
Ganti
,
H.
, and
Khare
,
P.
,
2022
, “
Interactions Between Shock Waves and Liquid Droplet Clusters: Interfacial Physics
,”
ASME J. Fluids Eng.
,
144
(
10
), p.
101401
.10.1115/1.4054181
6.
Hamada
,
A.
,
Margha
,
L.
,
Alnemr
,
A. K.
,
Abdelrahman
,
M.
, and
Guaily
,
A.
,
2023
, “
Unsteady Supersonic Flow Over a 2-d Morphing Shock Control Bump Using Different Velocity Profiles
,”
AIAA
Paper No. 2023-2117.10.2514/6.2023-2117
7.
Hamada
,
A. A.
,
Margha
,
L.
,
AbdelRahman
,
M. M.
, and
Guaily
,
A.
,
2022
, “
Shock System Dynamics of a Morphing Bump Over a Flat Plate
,”
ASME
Paper No. FEDSM2022-87504.10.1115/FEDSM2022-87504
8.
Mouton
,
C. A.
,
2007
, “
Transition between regular reflection and mach reflection in the dual-solution domain
,” Ph.D. thesis,
California Institute of Technology, Pasadena, CA
.
9.
Hornung
,
H.
,
1986
, “
Regular and Mach Reflection of Shock Waves
,”
Annu. Rev. Fluid Mech.
,
18
(
1
), pp.
33
58
.10.1146/annurev.fl.18.010186.000341
10.
Ben-Dor
,
G.
,
2007
,
Shock Wave Reflection Phenomena
, Vol.
2
,
Springer
, New York.
11.
Li
,
H.
, and
Ben-Dor
,
G.
,
1997
, “
A Parametric Study of Mach Reflection in Steady Flows
,”
J. Fluid Mech.
,
341
, pp.
101
125
.10.1017/S0022112097005375
12.
Azevedo
,
D.
, and
Liu
,
C. S.
,
1993
, “
Engineering Approach to the Prediction of Shock Patterns in Bounded High-Speed Flows
,”
AIAA J.
,
31
(
1
), pp.
83
90
.10.2514/3.11322
13.
Mach
,
E.
,
1878
,
Über Den Verlauf Der Funkenwellen in Der Ebene Und im Raume
,
kk Hof-Und Staatsdruckerei
.
14.
Von Neumann
,
J.
,
1943
, “
Oblique Reflection of Shocks
,”
Bureau Ordinance, Explosive Research Report No. 12, WA
.
15.
Hornung
,
H.
, and
Robinson
,
M.
,
1982
, “
Transition From Regular to Mach Reflection of Shock Waves Part 2. the Steady-Flow Criterion
,”
J. Fluid Mech.
,
123
, pp.
155
164
.10.1017/S0022112082003000
16.
Chpoun
,
A.
,
Passerel
,
D.
,
Li
,
H.
, and
Ben-Dor
,
G.
,
1995
, “
Reconsideration of Oblique Shock Wave Reflections in Steady Flows. Part 1: Experimental Investigation
,”
J. Fluid Mech.
,
301
, pp.
19
35
.10.1017/S0022112095003776
17.
Ivanov
,
M.
,
Kudryavtsev
,
A.
,
Nikiforov
,
S.
,
Khotyanovsky
,
D.
, and
Pavlov
,
A.
,
2003
, “
Experiments on Shock Wave Reflection Transition and Hysteresis in Low-Noise Wind Tunnel
,”
Phys. Fluids
,
15
(
6
), pp.
1807
1810
.10.1063/1.1572874
18.
Tao
,
Y.
,
Fan
,
X.
, and
Zhao
,
Y.
,
2014
, “
Viscous Effects of Shock Reflection Hysteresis in Steady Supersonic Flows
,”
J. Fluid Mech.
,
759
, pp.
134
148
.10.1017/jfm.2014.574
19.
Hu
,
Y.-C.
,
Zhou
,
W.-F.
,
Tang
,
Z.-G.
,
Yang
,
Y.-G.
, and
Qin
,
Z.-H.
,
2021
, “
Mechanism of Hysteresis in Shock Wave Reflection
,”
Phys. Rev. E
,
103
(
2
), p.
023103
.10.1103/PhysRevE.103.023103
20.
Chpoun
,
A.
, and
Ben-Dor
,
G.
,
1995
, “
Numerical Confirmation of the Hysteresis Phenomenon in the Regular to the Mach Reflection Transition in Steady Flows
,”
Shock Waves
,
5
(
4
), pp.
199
203
.10.1007/BF01419001
21.
Ivanov
,
M.
,
Gimelshein
,
S.
, and
Beylich
,
A.
,
1995
, “
Hysteresis Effect in Stationary Reflection of Shock Waves
,”
Phys. Fluids
,
7
(
4
), pp.
685
687
.10.1063/1.868591
22.
Ivanov
,
M.
,
Zeitoun
,
D.
,
Vuillon
,
J.
,
Gimelshein
,
S.
, and
Markelov
,
G.
,
1996
, “
Investigation of the Hysteresis Phenomena in Steady Shock Reflection Using Kinetic and Continuum Methods
,”
Shock Waves
,
5
(
6
), pp.
341
346
.10.1007/BF02434009
23.
Ivanov
,
M.
,
Markelov
,
G.
,
Kudryavtsev
,
A.
, and
Gimelshein
,
S.
,
1998
, “
Numerical Analysis of Shock Wave Reflection Transition in Steady Flows
,”
AIAA J.
,
36
(
11
), pp.
2079
2086
.10.2514/2.309
24.
Mouton
,
C. A.
, and
Hornung
,
H. G.
,
2008
, “
Experiments on the Mechanism of Inducing Transition Between Regular and Mach Reflection
,”
Phys. Fluids
,
20
(
12
), p.
126103
.10.1063/1.3042261
25.
Gao
,
B.
, and
Wu
,
Z.
,
2010
, “
A Study of the Flow Structure for Mach Reflection in Steady Supersonic Flow
,”
J. Fluid Mech.
,
656
, pp.
29
50
.10.1017/S0022112010001011
26.
Bai
,
C.-Y.
, and
Wu
,
Z.-N.
,
2017
, “
Size and Shape of Shock Waves and Slipline for Mach Reflection in Steady Flow
,”
J. Fluid Mech.
,
818
, pp.
116
140
.10.1017/jfm.2017.139
27.
Tao
,
Y.
,
Liu
,
W.
,
Fan
,
X.
,
Xiong
,
B.
,
Yu
,
J.
, and
Sun
,
M.
,
2017
, “
A Study of the Asymmetric Shock Reflection Configurations in Steady Flows
,”
J. Fluid Mech.
,
825
, pp.
1
15
.10.1017/jfm.2017.280
28.
Roy
,
S.
, and
Gopalapillai
,
R.
,
2019
, “
An Analytical Model for Asymmetric Mach Reflection Configuration in Steady Flows
,”
J. Fluid Mech.
,
863
, pp.
242
268
.10.1017/jfm.2018.945
29.
Naidoo
,
K.
, and
Skews
,
B. W.
,
2011
, “
Dynamic Effects on the Transition Between Two-Dimensional Regular and Mach Reflection of Shock Waves in an Ideal, Steady Supersonic Free Stream
,”
J. Fluid Mech.
,
676
, pp.
432
460
.10.1017/jfm.2011.58
30.
Naidoo
,
K.
, and
Skews
,
B.
,
2014
, “
Dynamic Transition From Mach to Regular Reflection of Shock Waves in a Steady Flow
,”
J. Fluid Mech.
,
750
, pp.
385
400
.10.1017/jfm.2014.288
31.
Goyal
,
R.
,
Sameen
,
A.
,
Jayachandran
,
T.
, and
Rajesh
,
G.
,
2021
, “
Dynamic Effects in Transition From Regular to Mach Reflection in Steady Supersonic Flows
,”
Phys. Rev. E
,
104
(
5
), p.
055101
.10.1103/PhysRevE.104.055101
32.
Felthun
,
L. T.
, and
Skews
,
B. W.
,
2004
, “
Dynamic Shock Wave Reflection
,”
AIAA Journal
,
42
(
8
), pp.
1633
1639
.10.2514/1.810
33.
Laguarda
,
L.
,
Hickel
,
S.
,
Schrijer
,
F.
, and
Van Oudheusden
,
B.
,
2020
, “
Dynamics of Unsteady Asymmetric Shock Interactions
,”
J. Fluid Mech.
,
888
, p. A18.10.1017/jfm.2020.28
34.
Margha
,
L.
,
Hamada
,
A. A.
,
Ahmed
,
O.
, and
Eltaweel
,
A.
,
2022
, “
Numerical Investigation of a Rotating Double Compression Ramp Intake
,”
ASME
Paper No. FEDSM2022-87753.10.1115/FEDSM2022-87753
35.
Margha
,
L.
,
Hamada
,
A. A.
,
Knight
,
D. D.
, and
Eltaweel
,
A.
,
2021
, “
Dynamic Transition From Regular to Mach Reflection Over a Moving Wedge
,”
ASME
Paper No. IMECE2021-69625.10.1115/IMECE2021-69625
36.
Margha
,
L.
,
Hamada
,
A. A.
, and
Eltaweel
,
A.
,
2022
, “
Dynamic Transition From Mach to Regular Reflection Over a Moving Wedge
,”
ASME
Paper No.FEDSM2022-87754.10.1115/FEDSM2022-87754
37.
Margha
,
L.
,
Hamada
,
A.
, and
Eltaweel
,
A.
,
2023
, “
RR to MR Over a Moving Wedge at a High Supersonic Flow
,”
AIAA
Paper No. AIAA-2023-1649.10.2514/6.AIAA-2023-1649
38.
Kurganov
,
A.
, and
Tadmor
,
E.
,
2000
, “
New High-Resolution Semi-Discrete Central Schemes for Hamilton–Jacobi Equations
,”
J. Comput. Phys.
,
160
(
2
), pp.
720
742
.10.1006/jcph.2000.6485
39.
Kurganov
,
A.
,
Noelle
,
S.
, and
Petrova
,
G.
,
2001
, “
Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton–Jacobi Equations
,”
SIAM J. Sci. Comput.
,
23
(
3
), pp.
707
740
.10.1137/S1064827500373413
40.
Greenshields
,
C. J.
,
Weller
,
H. G.
,
Gasparini
,
L.
, and
Reese
,
J. M.
,
2010
, “
Implementation of Semi-Discrete, Non-Staggered Central Schemes in a Colocated, Polyhedral, Finite Volume Framework, for High-Speed Viscous Flows
,”
Int. J. Numer. Methods Fluids
,
63
(
1
), pp.
1
21
.10.1002/fld.2069
41.
Hirt
,
C. W.
,
Amsden
,
A. A.
, and
Cook
,
J.
,
1974
, “
An Arbitrary Lagrangian–Eulerian Computing Method for All Flow Speeds
,”
J. Comput. Phys.
,
14
(
3
), pp.
227
253
.10.1016/0021-9991(74)90051-5
You do not currently have access to this content.