Abstract

In this work, the performance of new wind blade designs for small-scale horizontal axis wind turbines (HAWTs) was studied and compared with the performance of a baseline design. Three J-shaped pressure-side truncation ratios (1/3, 1/2, and 2/3) and two Kammtail Virtual Foil (KVF) truncation ratios (1/8 and 1/4) were studied. The baseline design was experimentally investigated. Output power was measured using a digital rotary torque sensor at three different wind speeds. Tip speed ratio (TSR) was calculated after measuring each wind speed's free-rotating revolutions per minute (RPM). Three wind speeds and experimental TSRs were used in three-dimensional simulations to capture the performances of the proposed cases and compare them with the baseline. The simulation investigation was carried out for lab-scale and scaled cases. The three-dimensional study found that the J-shaped blades enhanced the performance of the HAWTs for both lab-scale and scaled cases. J-shaped blades with a 1/3 opening ratio yielded an average power coefficient enhancement of around 1.56% and 4.16% for lab-scale and scaled cases, respectively. J-shaped blades with a 1/2 opening ratio yielded an average power coefficient enhancement of around 1.15% and 4.23% for lab-scale and scaled cases, respectively. On the other hand, J-shaped blades with a 2/3 opening ratio yielded an average power coefficient enhancement of around −0.12% and 2.54% for lab-scale and scaled cases, respectively. Furthermore, it was found that the KVF blades diminished the performance for both lab-scale and scaled cases.

References

1.
Manwell
,
J. F.
,
McGowan
,
J. G.
, and
Rogers
,
A. L.
,
2009
,
Wind Energy Explained: Theory, Design and Application
, 2nd ed.,
Wiley
, Hoboken, NJ.
2.
U. E. I. A. (EIA)
, 2024, “
Wind Explained—Electricity Generation From Wind
,” U. E. I. A. (EIA), Washington, DC, accessed Oct. 8, 2024, https://www.eia.gov/energyexplained/wind/electricity-generation-from-wind.php
3.
Karasu
,
H.
, and
Dincer
,
I.
,
2018
, “
Analysis and Efficiency Assessment of Direct Conversion of Wind Energy Into Heat Using Electromagnetic Induction and Thermal Energy Storage
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071201
.10.1115/1.4039023
4.
Qandil
,
M. D. A. A. I.
,
Al Hamad
,
S.
,
Saadeh
,
W.
, and
Amano
,
R. S.
,
2022
, “
Performance of Hybrid Renewable Energy Power System for a Residential Building
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
041301
.10.1115/1.4051541
5.
Al Hamad
,
S.
,
Habash
,
O. H. A.
, and
Amano
,
R. S.
,
2022
, “
Effect of the J-Shaped Wind Turbine Airfoil Opening Ratio and Thickness on the Performance of Symmetrical Airfoils
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
051303
.10.1115/1.4053743
6.
Chen
,
J.
,
Yang
,
H.
,
Yang
,
M.
, and
Xu
,
H.
,
2015
, “
The Effect of the Opening Ratio and Location on the Performance of a Novel Vertical Axis Darrieus Turbine
,”
Energy
,
89
, pp.
819
834
.10.1016/j.energy.2015.05.136
7.
Auyanet
,
G.
,
Santoso
,
R.
,
Mohan
,
H.
,
Rathore
,
S.
,
Chakraborty
,
D.
, and
Verdin
,
P.
,
2022
, “
CFD-Based J-Shaped Blade Design Improvement for Vertical Axis Wind Turbines
,”
Sustainability
,
14
(
22
), p.
15343
.10.3390/su142215343
8.
Rathod
,
U. H.
,
Talukdar
,
P. K.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2019
, “
Effect of Capped Vents on Torque Distribution of a Semicircular-Bladed Savonius Wind Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
101201
.10.1115/1.4043791
9.
TREK, 2023, “
Kammtail Virtual Foil
,” TREK, Waterloo, WI, accessed Dec. 29, 2023, https://www.trekbikes.com/us/en_US/inside_trek/kammtail_virtual_foil/
10.
Harder
,
P.
,
Cusack
,
D.
,
Matson
,
C.
, and
Lavery
,
M.
,
2010
, “
Airfoil Development for the Trek Speed Concept Triathlon Bicycle
,” (
epub
).https://www.yumpu.com/en/document/view/27210723/airfoil-development-for-the-trek-speed-concept-slowtwitchcom
11.
Ahmed
,
M. R.
, and
Nabolaniwaqa
,
E.
,
2019
, “
Performance Studies on a Wind Turbine Blade Section for Low Wind Speeds With a Gurney Flap
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
111202
.10.1115/1.4043708
12.
Yan
,
Y.
,
Avital
,
E.
,
Williams
,
J.
, and
Cui
,
J.
,
2020
, “
Performance Improvements for a Vertical Axis Wind Turbine by Means of Gurney Flap
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021205
.10.1115/1.4044995
13.
Beyhaghi
,
S.
, and
Amano
,
R.
,
2017
, “
Improvement of Aerodynamic Performance of Cambered Airfoils Using Leading-Edge Slots
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051204
.10.1115/1.4036047
14.
Beyhaghi
,
S.
, and
Amano
,
R.
,
2019
, “
Multivariable Analysis of Aerodynamic Forces on Slotted Airfoils for Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051214
.10.1115/1.4042914
15.
Bhavsar
,
H.
,
Roy
,
S.
, and
Niyas
,
H.
,
2023
, “
Aerodynamic Performance Enhancement of the DU99W405 Airfoil for Horizontal Axis Wind Turbines Using Slotted Airfoil Configuration
,”
Energy
,
263
, p.
125666
.10.1016/j.energy.2022.125666
16.
Lilley
,
G.
, and
Rainbird
,
W.
,
1956
, “
A Preliminary Report on the Design and Performance of Ducted Windmills
,” Cranfield University, Bedford, UK, Report No.
102
.https://dspace.lib.cranfield.ac.uk/bitstreams/01cdfcf2-d9c5-4c5e-ad8b-43e9e87c31c3/download
17.
Safford
,
D. A.
,
Wang
,
J.
,
Liang
,
C.
, and
Visser
,
K.
,
2024
, “
Unsteady Reynolds-Averaged Navier–Stokes Simulations of a Ducted Wind Turbine
,”
ASME J. Fluids Eng.
,
146
(
3
), p.
031202
.10.1115/1.4063615
18.
Hurley
,
O. F.
,
Chow
,
R.
,
Blaylock
,
M. L.
,
Cooperman
,
A. M.
, and
Van Dam
,
C.
,
2019
, “
Blade Element Momentum Study of Rotor Aerodynamic Performance and Loading for Active and Passive Microjet Systems
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051213
.10.1115/1.4043326
19.
Qaissi
,
K.
,
Elsayed
,
O.
,
Faqir
,
M.
, and
Essadiqi
,
E.
,
2022
, “
Performance Enhancement Analysis of a Horizontal Axis Wind Turbine by Vortex Trapping Cavity
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
031303
.10.1115/1.4052980
20.
Javaid
,
M. T.
,
Sajjad
,
U.
,
Hassan
,
S.
,
Nasir
,
S.
,
Shahid
,
M. U.
,
Ali
,
A.
, and
Salamat
,
S.
,
2023
, “
Power Enhancement of Vertical Axis Wind Turbine Using Optimum Trapped Vortex Cavity
,”
Energy
,
278
, p.
127808
.10.1016/j.energy.2023.127808
21.
El-Askary
,
W. A.
,
Sakr
,
I. M.
,
Kotb
,
M. A.
, and
Abdelsalam
,
A. M.
,
2023
, “
Enhancing Performance of Small Capacity Horizontal Axis Wind Turbine Using Grooved Linearized-Chord Blades
,”
ASME J. Energy Resour. Technol.
,
145
(
4
), p.
041301
.10.1115/1.4055204
22.
Abdelsalam
,
A. M.
,
El-Askary
,
W. A.
,
Kotb
,
M. A.
, and
Sakr
,
I. M.
,
2021
, “
Computational Analysis of an Optimized Curved-Bladed Small-Scale Horizontal Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
061302
.10.1115/1.4048531
23.
Derakhshan
,
S.
,
Tavaziani
,
A.
, and
Kasaeian
,
N.
,
2015
, “
Numerical Shape Optimization of a Wind Turbine Blades Using Artificial Bee Colony Algorithm
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051210
.10.1115/1.4031043
24.
Garcia-Ribeiro
,
D.
,
Malatesta
,
V.
,
Moura
,
R. C.
, and
Cerón-Muñoz
,
H. D.
,
2023
, “
Assessment of RANS-Type Turbulence Models for CFD Simulations of Horizontal Axis Wind Turbines at Moderate Reynolds Numbers
,”
J. Braz. Soc. Mech. Sci. Eng.
,
45
(
11
), p.
566
.10.1007/s40430-023-04488-0
25.
Hasan
,
A. S.
,
Abousabae
,
M.
,
Salem
,
A. R.
, and
Amano
,
R. S.
,
2021
, “
Study of Aerodynamic Performance and Power Output for Residential-Scale Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
011302
.10.1115/1.4047602
26.
Hasan
,
A.
,
Abousabae
,
M.
,
Al Hamad
,
S.
, and
Amano
,
R. S.
,
2023
, “
Experimental and Numerical Investigation of Tubercles and Winglets Horizontal Axis Wind Turbine Blade Design
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
011302
.10.1115/1.4054756
27.
Hasan
,
A.
,
Abousabae
,
M.
,
Al Hamad
,
S.
, and
Amano
,
R. S.
,
2023
, “
Experimental and Numerical Investigation of Vortex Generators and Winglets in Horizontal Axis Wind Turbine Blade Design
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
011301
.10.1115/1.4054755
28.
Abdelghany
,
E. S.
,
Sarhan
,
H. H.
,
Alahmadi
,
R.
, and
Farghaly
,
M. B.
,
2023
, “
Study the Effect of Winglet Height Length on the Aerodynamic Performance of Horizontal Axis Wind Turbines Using Computational Investigation
,”
Energies
,
16
(
13
), p.
5138
.10.3390/en16135138
29.
Villalpando
,
F.
,
Reggio
,
M.
, and
Ilinca
,
A.
,
2011
, “
Assessment of Turbulence Models for Flow Simulation Around a Wind Turbine Airfoil
,”
Modell. Simul. Eng.
,
2011
(
1
), pp.
1
8
.10.1155/2011/714146
30.
Kalvig
,
S.
,
Manger
,
E.
, and
Hjertager
,
B.
,
2012
, “
Comparing Different CFD Wind Turbine Modelling Approaches With Wind Tunnel Measurements
,”
J. Phys.: Conf. Ser.
,
555
, p.
012056
.10.1088/1742-6596/555/1/012056
31.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2019
, “
On the Accuracy of Turbulence Models for CFD Simulations of Vertical Axis Wind Turbines
,”
Energy
,
180
, pp.
838
857
.10.1016/j.energy.2019.05.053
32.
Al Hamad
,
S.
,
Abousabae
,
M.
,
Hasan
,
A.
,
Habash
,
O.
, and
Amano
,
R. S.
,
2023
, “
Effect of Winglet Blade on the Performance of Small-Scale Horizontal Axis Wind Turbine
,”
ASME
Paper No. GT2023-101643.10.1115/GT2023-101643
33.
ATO, 2023, “
User Manual
,” ATO Industrial Automation, Diamond Bar, CA, accessed Dec. 24, 2023, https://www.ato.com/Content/doc/digital-rotary-torque-sensor-user-manual-upgrade-version.pdf
34.
Jackson
,
R. S.
, and
Amano
,
R.
,
2017
, “
Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051207
.10.1115/1.4036051
35.
Folkecenter, 2024, “
Catalogue of Small Wind Turbines
,” Folkecenter Print, Denmark, accessed Oct. 8, 2024, https://www.folkecenter.net/wp-content/uploads/2022/07/353.Catalogue-of-small-wind-turbines-8th-edition.pdf
You do not currently have access to this content.