The solution of fatigue strength as a function of preloading in dynamic fatigue (constant stress-rate) testing was obtained analytically and numerically. The effect of preloading on dynamic fatigue strength decreases with increasing fatigue parameter (n), and for n ≥ 20 the effect is negligible up to a preloading of 90 percent. The solution was verified by dynamic fatigue experiments conducted with soda-lime glass and alumina specimens in room-temperature distilled water. This result showed that one can apply a preloading corresponding up to 90 percent of fatigue strength for most glass and ceramic materials, resulting in a dramatic saving of testing time in dynamic fatigue testing. The key feature that makes this technique feasible is that most of the slow crack growth under dynamic fatigue loading occurs close to failure time where the dynamic fatigue strength is defined.

1.
Wiederhorn
S. M.
, and
Bolz
L. H.
, “
Stress Corrosion and Static Fatigue of Glass
,”
J. Am. Ceram. Soc.
, Vol.
53
,
1970
, pp.
543
548
.
2.
Evans
A. G.
, and
Wiederhorn
S. M.
, “
Crack Propagation and Failure Prediction in Silicon Nitride at Elevated Temperatures
,”
J. Mater. Sci.
, Vol.
9
,
1974
, pp.
270
278
.
3.
Hubner
H.
, and
Jillek
W.
, “
Subcritical Crack Extension and Crack Resistance in Polycrystalline Alumina
,”
J. Mater. Sci.
, Vol.
12
,
1977
, pp.
117
125
.
4.
Sakaguchi
S.
,
Sawaki
Y.
,
Abe
Y.
, and
Kawasaki
T.
, “
Delayed Failure in Silica Glass
,”
J. Mater. Sci.
, Vol.
17
,
1982
, pp.
2878
2886
.
5.
Dauskardt
R. H.
,
James
M. R.
,
Porter
J. R.
, and
Ritchie
R. O.
, “
Cyclic Fatigue-Crack Growth in SiC-Whisker-Reinforced Alumina Ceramic Composite: Long- and Small-Crack Behavior
,”
J. Am. Ceram. Soc.
, Vol.
75
,
1992
, pp.
759
771
.
6.
Mendiratta
M. G.
, and
Petrovic
J. J.
, “
Slow Crack Growth From Controlled Surface Flaws in Hot-Pressed Si3N4
,”
J. Am. Ceram. Soc.
, Vol.
61
,
1978
, pp.
226
230
.
7.
Henager
C. H.
, and
Jones
R. H.
, “
Environmental Effects on Slow Crack Growth in Silicon Nitride
,”
Ceram. Eng. Sci. Proc.
, Vol.
9
,
1988
, pp.
1525
1530
.
8.
Horibe
S.
, and
Hirahara
R.
, “
Cyclic Fatigue of Ceramic Materials: Influence of Crack Path and Fatigue Mechanisms
,”
Acta Metall. Mater.
, Vol.
39
,
1991
, pp.
1309
1317
.
9.
Ritter, J. E., “Engineering Design and Fatigue Failure of Brittle Materials,” in: Fracture Mechanics of Ceramics, Vol. 4, Bradt, R. C., Hasselman, D. P. H., and Lange, F. F., eds., Plenum Publishing Co., New York, 1978, pp. 661–686.
10.
Trantina
G. G.
, “
Strength and Life Prediction for Hot-Pressed Silicon Nitride
,”
J. Am. Ceram. Soc.
, Vol.
62
,
1979
, pp.
377
380
.
11.
Govila
R. K.
, “
Uniaxial Tensile and Flexural Stress Rupture Strength of Hot-Pressed Si3N4
,”
J. Am. Cer. Soc.
, Vol.
65
,
1982
, pp.
15
21
.
12.
Quinn, G. D., and Quinn, J. B., “Slow Crack Growth in Hot-Pressed Silicon Nitride,” in: Fracture Mechanics of Ceramics, Vol. 6, Bradt, R. C., Evans, A. G., Hasselman, D. P. H., and Lange, F. F., eds., Plenum Press, New York, 1983, pp. 603–636.
13.
Chuck
L.
,
McCullum
D. E.
,
Hecht
N. L.
, and
Goodrich
S. M.
, “
High Temperature Tension-Tension Cyclic Fatigue for a Hipped Silicon Nitride
,”
Ceram. Eng. Sci. Proc.
, Vol.
12
,
1991
, pp.
1509
1523
.
14.
Choi, S. R., Salem, J. A., and Palko, J. A., “Comparison of Tension and Flexure to Determine Fatigue Life Prediction Parameters at Elevated Temperatures,” in Life Prediction Methodologies and Data for Ceramic Materials, ASTM STP 1201, Brinkman, C. R., and Duffy, S. F., eds., ASTM, Philadelphia, 1994, pp. 98–111;
15.
Choi
S. R.
,
Salem
J. A.
,
Nemeth
N.
, and
Gyekenyesi
J. P.
, “
Elevated Temperature Slow Crack Growth of Silicon Nitride Under Dynamic, Static, and Cyclic Flexural Loading
,”
Ceram. Eng. Sci. Proc.
, Vol.
15
,
1994
, pp.
597
604
.
16.
“Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Ambient Temperature,” in balloting process, ASTM C28 (Advanced Ceramics) Main Committee, American Society for Testing and Materials, Philadelphia, 1997.
17.
Ritter
J. E.
,
Oates
P. B.
,
Fuller
E. R.
, and
Wiederhorn
S. M.
, “
Proof Testing of Ceramics, Part 1 Experiment
,”
J. Mater. Sci.
, Vol.
15
,
1980
, pp.
2275
2281
;
18.
Fuller
E. R.
,
Wiederhorn
S. M.
,
Ritter
J. E.
, and
Oates
P. B.
, “
Proof Testing of Ceramics, Part 2 Theory
,”
J. Mater. Sci.
, Vol.
15
,
1980
, pp.
2282
2295
.
19.
Lawn
B. R.
,
Marshall
D. B.
,
Anstis
G. R.
, and
Dabbs
T. P.
, “
Fatigue Analysis of Brittle Materials Using Indentation Flaws, Part 1. General Theory
,”
J. Mater. Sci.
, Vol.
16
,
1981
, pp.
2846
2854
.
20.
Choi
S. R.
,
Ritter
J. E.
, and
Jakus
K.
, “
Failure of Glass With Subthreshold Flaws
,”
J. Am. Ceram. Soc.
, Vol.
73
,
1990
, pp.
268
274
.
21.
Marshall
D. B.
,
Lawn
B. R.
, and
Chantikul
P.
, “
Residual Stress Effects in Sharp-Contact Cracking: I
,”
J. Mater. Sci.
, Vol.
14
,
1979
, pp.
2001
2012
.
22.
Choi
S. R.
, and
Salem
J. A.
, “
Preloading Technique in Dynamic Fatigue Testing of Ceramics: Effect of Preloading on Strength Variation
,”
J. Mater. Sci. Letters
, Vol.
15
,
1996
, pp.
1963
1965
.
23.
Choi
S. R.
, and
Salem
J. A.
, “
Effect of Preloading on Fatigue Strength in Dynamic Fatigue Testing of Ceramic Materials at Elevated Temperature
,”
Ceram. Eng. Sci. Proc.
, Vol.
16
,
1995
, pp.
87
94
.
This content is only available via PDF.
You do not currently have access to this content.