Many gas turbines simulation codes have been developed to estimate power plant performance both in design and off-design conditions in order to establish the adequate control criteria or the possible cycle improvements; estimation of pollutant emissions would be very important using these codes in order to determine the optimal performance satisfying legal emission restrictions. This paper present the description of a one-dimensional emission model to simulate different gas turbine combustor typologies, such as conventional diffusion flame combustors, dry-low NOx combustors (DLN) based on lean-premixed technology (LPC) or rich quench lean scheme (RQL) and the new catalytic combustors. This code is based on chemical reactor analysis, using detailed kinetics mechanisms, and it is integrated with an existing power plant simulation code (ESMS Energy System Modular Simulator) to analyze the effects of power plant operations and configurations on emissions. The main goal of this job is the study of the interaction between engine control and combustion system. This is a critical issue for all DLN combustors and, in particular, when burning low-LHV fuel. The objective of this study is to evaluate the effectiveness of different control criteria with regard to pollutant emissions and engine performances. In this paper we present several simulations of actual engines comparing the obtained results with the experimental published data.

1.
Puri
,
R.
,
Stansel
,
D. M.
,
Smith
,
D. A.
, and
Razdan
,
M. K.
,
1997
, “
Dry Ultralow NOx ‘Green Thumb’ Combustor for Allison’s 501-K Series Industrial Engines
,”
ASME J. Eng. Gas Turbines Power
,
119
, pp.
93
101
.
2.
Lefebvre, A. H., 1999, Gas Turbine Combustion, 2nd Ed., Taylor and Francis, London.
3.
Yamada
,
H.
,
Shimodaira
,
K.
, and
Hayashi
,
S.
,
1997
, “
On-Engine Evaluation of Emissions Characteristics of a Variable Geometry Lean-Premixed Combustor
,”
ASME J. Eng. Gas Turbines Power
,
119
, pp.
66
69
.
4.
Carcasci
,
C.
, and
Facchini
,
B.
,
1996
, “
A Numerical Method for Power Plant Simulations
,”
ASME J. Energy Resour. Technol.
,
118
, pp.
36
43
.
5.
Touchton
,
G. L.
,
1984
, “
An Experimentally Verified NOx Prediction Algorithm Incorporating the Effects of Steam Injection
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
833
840
.
6.
Rizk
,
N. K.
, and
Mongia
,
H. C.
,
1993
, “
Semianalytical Correlations for NOx, CO, and UHC Emissions
,”
ASME J. Eng. Gas Turbines Power
,
115
, pp.
612
619
.
7.
Rizk
,
N. K.
, and
Mongia
,
H. C.
,
1995
, “
A Semianalytical Emission Model for Diffusion Flame, Rich/Lean and Premixed Lean Combustors
,”
ASME J. Eng. Gas Turbines Power
,
117
, pp.
290
301
.
8.
Facchini, B., Ferrara, G., and Mazzilli, P., 1998, “A Semi-Analytical Approach to Emissions Prediction in Gas Turbine Combustors,” ASME Paper 98-GT-216.
9.
Nicol
,
D. G.
,
Steele
,
R. C.
,
Marinov
,
N. M.
, and
Malte
,
P. C.
,
1995
, “
The Importance of the Nitrous Oxide Pathway to NOx in Lean-Premixed Combustion
,”
ASME J. Eng. Gas Turbines Power
,
117
, pp.
100
117
.
10.
Shampine, L. F., 1994, Numerical Solutions of Ordinary Differential Equations, Chapman and Hall, New York.
11.
Kee, R. J., Rupley, F. M., and Miller, J. A., 1989, “Chemkin-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics,” SAND89-8009, Sandia National Laboratories, Livermore, CA.
12.
Broadwell
,
J. E.
, and
Lutz
,
A. E.
,
1998
, “
A Turbulent Jet Chemical Reaction Model: NOx Production in Jet Flames
,”
Combust. Flame
,
114
, pp.
319
335
.
13.
Mellor, A. M., 1990, “Design of Modern Gas Turbine Combustor,” Academic Press, London.
14.
Clayes
,
J. P.
,
Elward
,
K. M.
,
Mick
,
W. J.
, and
Symonds
,
R. A.
,
1993
, “
Combustion System Performance and Field Test Results of the MS7001F Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
115
, pp.
537
546
.
15.
Carcasci, C., Colitto Cormacchione, N. A., and Facchini, B., 2000, “Single Shaft Gas Turbine Comparison Using Low BTU Fuel (Biofuel) and Part Load Control Systems,” POWER-GEN Europe 2000, Paper PGE-C-81, Helsinki, Finland, June 20–22, printed by PEI: Power Engineering International, PennWell (USA).
16.
GRI Mech, Smith, Gregory P., Golden, David M., Frenklach, Michael, Moriarty, Nigel W., Eiteneer, Boris, Goldenberg, Mikhail, Bowman, C. Thomas, Hanson, Ronald K., Song, Soonho, Gardiner, Jr., William C., Lissianski, Vitali V., and Qin Zhiwei.
17.
Vandervort, C. L., 2000, “9 ppm NOx/CO Combustion System for “F” Class Industrial Gas Turbines,” ASME Paper 2000-GT-0086.
18.
Joshi, N. D., Mongia, H. M., Leonard, G., Stegmaier, J. W., and Vickers, E. C., 1998, “Dry Low Emissions Combustor Development,” ASME Paper 98-GT-310.
19.
Leonard
,
G.
, and
Stegmaier
,
J.
,
1994
, “
Development of an Aeroderivative Gas Turbine Dry-Low Emissions Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
116
, pp.
542
546
.
20.
Smith, K., Steele, R., and Rogers, J., 1999, “Variable Geometry Fuel Injectors for Low Emissions Gas Turbines,” ASME Paper 99-GT-269.
21.
Feitelberg
,
A. S.
, and
Lacey
,
M. A.
,
1998
, “
The GE Rich-Quench-Lean Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
120
, pp.
502
508
.
You do not currently have access to this content.