Reliable NOx modeling depends on the accurate prediction of both velocity and temperature fields. The velocity and temperature fields of a propane diffusion flame combustor, with interior and exterior conjugate heat transfers, were first numerically studied. The results from three combustion models, together with the renormalization group (RNG) k-ε turbulence model and the discrete ordinates radiation model are discussed, and compared with comprehensive experimental measurements. The flow patterns and the recirculation zone length in the combustion chamber are excellently predicted, and the mean axial velocities are in fairly good agreement with the experimental data for all three combustion models. The mean temperature profiles are fairly well captured by the probability density function (PDF) and eddy dissipation (EDS) combustion models. However, the EDS-finite-rate combustion model fails to provide an acceptable temperature field. Based on the acceptable velocity and temperature fields, a number of NO modeling approaches were evaluated in a postprocessing mode. The partial-equilibrium approach of O and OH radical concentrations shows a significant effect on the thermal NO formation rate. In contrast, the prompt NO, the NO reburn mechanism and the third reaction of the extended Zeldovich mechanism have negligible effects on the overall NO formation in the present study. This study indicates that the semiempirical, postprocessing NO model can provide valuable NO simulations as long as the velocity and temperature fields are adequately predicted.

1.
Miller
,
J. A.
, and
Bowman
,
C. T.
,
1989
, “
Mechanism and Modeling of Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
15
, pp.
287
338
.
2.
Correa
,
S. M.
,
1992
, “
A Review of NOx Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
, pp.
329
362
.
3.
Volkov
,
D. V.
,
Belokin
,
A. A.
,
Lyubimov
,
D. A.
,
Zakharov
,
V. M.
, and
Opdyke
, Jr.,
G.
,
2001
, “
Flamelet Model of NOx in a Diffusion Flame Combustor
,”
Trans. ASME: J. Eng. Gas Turbines Power
,
123
, pp.
774
778
.
4.
Price, G. R., Botros, K. K., and Goldin, G. M., 2001, “CFD Predictions and Field Measurements of NOx Emissions From LM1600 Gas Turbine During Part Load Operation,” ASME Paper No. GT-2000-350.
5.
Eggels, R. L. G. M., 2001, “Modeling of NOx Formation of a Premixed DLE Gas Turbine Combustor,” ASME Paper No. GT-2001-0069.
6.
Cannon, S. M., Zuo, B., and Smith, C. E., 2003, “LES Prediction of Combustor Emissions From a Practical Industrial Fuel Injector,” ASME Paper No. GT-2003-38200.
7.
Kyne, A. G., Pourkashanian, M., Wilson, C. W., and Williams, A., 2002, “Validation of a Flamelet Approach to Modeling 3-D Turbulent Combustion Within an Airspray Combustor,” ASME Paper No. GT-2002-30096.
8.
Campbell, I., “A Comprehensive Experimental Study of a Generic Combustor,” to be published.
9.
Poinsot, T., and Veynante, D., 2001, “Theoretical and Numerical Combustion,” R. T. Edwards, Inc., Philadelphia, PA.
10.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Re-Normalization Group Analysis of Turbulence: I. Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
1
51
.
11.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
G. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
,
4
(
7
), pp.
1510
1520
.
12.
Choudhury, D., 1993, “Introduction to the Renormalization Group Method and Turbulence Modeling,” Fluent Inc. TM-107.
13.
Magnussen, B. F., and Hjertager, B. H., 1976, “On Mathematical Models of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion,” Proceedings of the 16th Symposium on Combustion (International), pp. 719–729.
14.
Bilger
,
R. W.
,
1989
, “
Turbulent Diffusion Flames
,”
Annu. Rev. Fluid Mech.
,
21, 101
, pp.
101
135
.
15.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1984
, “
Chemical Kinetic Modeling of Hydrocarbon Combustion
,”
Prog. Energy Combust. Sci.
,
10
, pp.
1
57
.
16.
Sivathanu
,
Y. R.
, and
Faeth
,
G. M.
,
1990
, “
Generalized State Relationships for Scalar Properties in Non-Premixed Hydrocarbon/Air Flames
,”
Combust. Flame
,
82
, pp.
211
230
.
17.
Kuo, K. K. Y., 1986, Principles of Combustion, John Wiley and Sons, New York.
18.
Glassman, I., 1987, Combustion, Academic Press, San Diego, CA.
19.
Westenberg
,
A. A.
,
1971
, “
Kinetics of NO and CO in Lean, Premixed Hydrocarbon-Air Flames
,”
Combust. Sci. Technol.
,
4
, pp.
59
64
.
20.
Hanson, R. K., and Salimian, S., 1984, “Survey of Rate Constants in the N/H/O System,” Combustion Chemistry, W. C. Gardiner, ed., Springer, New York.
21.
Bowman, C. T., 1991, “Chemistry of Gaseous Pollutant Formation and Destruction,” Fossil Fuel Combustion, W. Bartok, and A. F. Sarofim, eds., John Wiley & Sons, New York.
22.
Fluent Inc., 2003, “Fluent 6.1 Documentation.”
23.
Warnatz, J., “NOx Formation in High Temperature Processes,” University of Stuttgart, Germany.
24.
Baulch
,
D. L.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Esser
,
C.
,
Frank
,
P.
,
Just
,
Th.
,
Kerr
,
J. A.
,
Pilling
,
M. J.
,
Troe
,
J.
,
Walker
,
R. W.
, and
Warnatz
,
J.
,
1992
, “
Evaluated Kinetic Data for Combustion Modeling
,”
J. Phys. Chem. Ref. Data
,
21
(
3
), pp.
411
734
.
25.
De Soete, G. G., 1975, “Overall Reaction Rates of NO and N2 Formation From Fuel Nitrogen,” Proceedings of 15th Symposium (International) on Combustion, pp. 1093–1102.
26.
Bachmaier
,
F.
,
Eberius
,
K. H.
, and
Just
,
T. H.
,
1973
, “
The Formation of Nitric Oxide and the Detection of HCN in Premixed Hydrocarbon-Air Flames at 1 Atmosphere
,”
Combust. Sci. Technol.
,
7
, pp.
77
84
.
27.
Dupont
,
V.
,
Pourkashanian
,
M.
,
Williams
,
A.
, and
Woolley
,
R.
,
1993
, “
The Reduction of NOx Formation in Natural Gas Burner Flames
,”
Fuel
,
72
, No.
4
, pp.
497
503
.
28.
Raithby
,
G. D.
, and
Chui
,
E. H.
,
1990
, “
A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
J. Heat Transfer
,
112
, pp.
415
423
.
29.
Jongen, T., 1992, “Simulation and Modeling of Turbulent Incompressible Flows,” Ph.D. thesis, EPF Lausanne, Lausanne, Switzerland.
30.
Kader
,
B.
,
1993
, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
24
(
9
), pp.
1541
1544
.
31.
Rose, J. W., and Cooper, J. R., 1977, Technical Data on Fuel, John Wiley & Sons, New York.
32.
Sislian
,
J. P.
,
Jiang
,
L. Y.
, and
Cusworth
,
R. A.
,
1988
, “
Laser Doppler Velocimetry Investigation of the Turbulence Structure of Axisymmetric Diffusion Flames
,”
Prog. Energy Combust. Sci.
,
14
(
2
), pp.
99
146
.
33.
Ishii
,
T.
,
Zhang
,
C.
, and
Sugiyama
,
S.
,
2000
, “
Effects of NO Models on the Prediction of NO Formation in a Regenerative Furnace
,”
J. Energy Resourc. Technol.
,
122
, pp.
224
228
.
You do not currently have access to this content.