The hot corrosion resistance of lanthanum zirconate and 8wt.% yttria-stabilized zirconia coatings produced by thermal spraying for use as thermal barriers on industrial gas turbines or in aerospace applications was evaluated. The two ceramic oxide coatings were exposed for various periods of time at temperatures up to 1000°C to vanadium- and sulfur-containing compounds, species often produced during the combustion of typical fuels used in these applications. Changes in the coatings were studied using a scanning electron microscope to observe the microstructure and x-ray diffraction techniques to analyze the phase composition. The results showed different behaviors for the two materials: the zirconia-based coating being rapidly degraded by the vanadium compounds and resistant to attack by the sulfur materials while the lanthanum zirconate was less damaged by exposure to vanadia but severely attacked in the presence of sulfur-containing species.

1.
Wigren
,
J.
, and
Pejryd
,
L.
, 1998, “
Thermal Barrier Coatings-Why, How, Where and Where To
,”
Thermal Spray-Meeting the Challenges of the 21st Century
,
C.
Coddet
, ed.,
ASM International
, Materials Park, OH, Vol.
2
, pp.
1531
1542
.
2.
Nelson
,
W. A.
, and
Orenstein
,
R. M.
, 1997, “
TBC Experience in Land-Based Gas Turbines
,”
J. Therm. Spray Technol.
1059-9630,
6
(
2
), pp.
176
180
.
3.
Beardsley
,
M. B.
, 1997, “
Thick Thermal Barrier Coatings for Diesel Engines
,”
J. Therm. Spray Technol.
1059-9630,
6
(
2
), pp.
181
186
.
4.
Steffens
,
H.-D.
,
Babiak
,
Z.
, and
Gramlich
,
M.
, 1999, “
Some Aspects of Thick Thermal Barrier Coating Lifetime Prolongation
,”
J. Therm. Spray Technol.
1059-9630,
8
(
4
), pp.
517
522
.
5.
Bose
,
S.
, and
DeMasi-Marcin
,
J.
, 1997, “
Thermal Barrier Coating Experience in Gas Turbine Engines at Pratt & Whitney
,”
J. Therm. Spray Technol.
1059-9630,
6
(
1
), pp.
99
104
.
6.
Vaßen
,
R.
,
Cao
,
X.
,
Tietz
,
F.
,
Kerkhoff
,
G.
, and
Stöver
,
D.
, 1999, “
La2Zr2O7—A New Candidate for Thermal Barrier Coatings
,” in
Proceedings of the United Thermal Spray Conference-UTSC’99
,
E.
Lugscheider
and
P. A.
Kammer
, eds.,
DVS-Verlag
, Düsseldorf, Germany, pp.
830
834
.
7.
Vaßen
,
R.
,
Cao
,
X.
,
Tietz
,
F.
,
Basu
,
D.
, and
Stöver
,
D.
, 2000, “
Zirconates as New Materials for Thermal Barrier Coatings
,”
J. Am. Ceram. Soc.
0002-7820,
83
(
8
), pp.
2023
2028
.
8.
Vaßen
,
R.
,
Cao
,
X.
, and
Stöver
,
D.
, 2001, “
Improvement of New Thermal Barrier Coating Systems Using a Layered or Graded Structure
,”
Ceram. Eng. Sci. Proc.
0196-6219,
22
(
4
), pp.
435
442
.
9.
Lee
,
W. Y.
,
Stinton
,
D. P.
,
Berndt
,
C. C.
,
Erdogan
,
F.
,
Lee
,
Y.-D.
, and
Mutasim
,
Z.
, 1996, “
Concept of Functionally Graded Materials for Advanced Thermal Barrier Coating Applications
,”
J. Am. Ceram. Soc.
0002-7820,
79
, pp.
3003
3012
.
10.
Jones
,
R. L.
, 1997, “
Some Aspects of the Hot Corrosion of Thermal Barrier Coatings
,”
J. Therm. Spray Technol.
1059-9630,
6
(
1
), pp.
77
84
.
11.
Marple
,
B. R.
,
Voyer
,
J.
,
Moreau
,
C.
, and
Nagy
,
D. R.
, 2000, “
Corrosion of Thermal Barrier Coatings by Vanadium and Sulfur Compounds
,”
Mater. High. Temp.
0960-3409,
17
(
3
), pp.
397
412
.
12.
Cao
,
X. Q.
,
Vaßen
,
R.
,
Jungen
,
W.
,
Schwartz
,
S.
,
Tietz
,
F.
, and
Stöver
,
D.
, 2001, “
Thermal Stability of Lanthanum Zirconate Plasma-Sprayed Coatings
,”
J. Am. Chem. Soc.
0002-7863,
84
, pp.
2086
2090
.
13.
Hamilton
,
J. C.
, and
Nagelberg
,
A. S.
, 1984, “
In situ Raman Spectroscopic Study of Yttria-Stabilized Zirconia Attack by Molten Sodium Vanadate
,”
J. Am. Chem. Soc.
0002-7863,
67
(
10
), pp.
686
690
.
14.
Hertl
,
W.
, 1988, “
Vanadia Reactions with Yttria Stabilized Zirconia
,”
J. Appl. Phys.
0021-8979,
63
(
11
), pp.
5514
5520
.
15.
Poston
Jr.,
J. A.
,
Siriwardane
,
R. V.
,
Fisher
,
E. P.
, and
Miltz
,
A. L.
, 2003, “
Thermal Decomposition of the Rare Earth Sulfates of Cerium (III), Cerium (IV), Lanthanum (III), and Samarium (III)
,”
Appl. Surf. Sci.
0169-4332,
214
, pp.
83
102
.
You do not currently have access to this content.