The strong influence of ambient temperature on the output and heat rate of a gas turbine has popularized the application of inlet fogging and overspray for power augmentation. In this paper we focus on practical considerations for the implementation of the fogging technology such as water quality requirements, foreign object damage, gas turbine inlet icing, intake duct design, changes in compressor performance characteristics, and blade coating distress problems. It also provides a checklist for users and project developers to facilitate the design and implementation of fogging systems. In addition, in this paper we cover operational experience and review the work pursued by gas turbine OEMs in the field of fogging technology. A list of unresolved issues and ongoing research related to the fogging technology is also provided.

1.
Bhargava
,
R. K.
,
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
,
Bianchi
,
M.
,
Melino
,
F.
,
Peretto
,
A.
, and
Ingistov
,
S.
, 2007, “
Gas Turbine Fogging Technology: A State-of-the-Art Review—Part I: Inlet Evaporative Fogging—Analytical and Experimental Aspects
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
443
453
.
2.
Bhargava
,
R. K.
,
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
,
Bianchi
,
M.
,
Melino
,
F.
,
Peretto
,
A.
, and
Ingistov
,
S.
, 2007, “
Gas Turbine Fogging Technology: A State-of-the-Art Review—Part II: Overspray Fogging—Analytical and Experimental Aspects
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
454
460
.
3.
Meher-Homji
,
C. B.
, and
Mee
,
T. R.
, III
, 1999, “
Gas Turbine Power Augmentation by Fogging of Inlet Air
,”
Proceedings of the 28th Turbomachinery Symposium
, Houston, TX, September.
4.
Chaker
,
M.
,
Meher-Homji
,
C. B.
, and
Mee
,
T. R.
III
, 2002, “
Inlet Fogging of Gas Turbine Engines-Part A: Fog Droplet Thermodynamics, Heat Transfer and Practical Considerations; Part B: Fog Droplet Sizing Analysis, Nozzle Types, Measurement and Testing; Part C: Fog Behavior in Inlet Ducts, CFD Analysis and Wind Tunnel Experiments
,” ASME Papers No. 2002-GT-30562, No. 30563, and No. 30564.
5.
Lecheler
,
S.
, and
Hoffmann
,
J.
, 2003, “
The Power of Water in Gas Turbines-ALSTOM’s Experience with Air Inlet Cooling
,” Power-Gen Latin America, Nov.
6.
Meher-Homji
,
C. B.
, 1995, “
Blading Vibration and Failures in Gas Turbines- Part A: Blading Dynamics and the Operating Environment;” Part B: Compressor and Turbine Airfoil Distress;” Part C: Detection and Troubleshooting;” Part D: Case Studies
,” ASME Papers No. 95-GT-418, No. 95-GT-419, No. 95-GT-420, and No. 95-GT-421.
7.
Meher-Homji
,
C. B.
, 1992, “
Gas Turbine Axial Compressor Fouling-A Unified Treatment of its Effects, Detection & Control
,”
Int. J. Turbo Jet Engines
0334-0082,
9
pp.
311
334
.
8.
Meher-Homji
,
C. B.
,
Chaker
,
M.
, and
Motiwalla
,
H.
, 2001, “
Gas Turbine Performance Deterioration
,”
Proceedings of the 30th Turbomachinery Symposium, Turbomachinery Laboratory
, Texas A&M University, Houston, 17–20 September.
9.
Jolly
,
S.
, 2003, “
Performance Enhancement of GT 24 with Wet Compression
,” Power Gen International, 9–11 Dec., Las Vegas, NV.
10.
Jolly
,
S.
, 2002, “
Wet Compression—A Powerful Means of Enhancing Combustion Turbine Capacity
,” Power-Gen International, Orlando Florida, 10–12 December.
11.
Haskell
,
R. W.
, 1989, “
Gas Turbine Compressor Operating Environment and Material Evaluation
,” ASME Paper No. 89-GT-42.
12.
Jolly
,
S.
(personal communication).
13.
Sohre
,
J. S.
, 1980, “
Shaft Currents Can Destroy Turbomachinery
,”
Power
, Mar., pp.
96
100
.
14.
Cataldi
,
G.
,
Guntner
,
H.
,
Matz
,
C.
,
McKay
,
T.
,
Hoffmann
,
J.
,
Nemet
,
A.
,
Lecheler
,
S.
, and
Braun
,
J.
, 2004, “
Influence of High Fogging Systems on Gas Turbine Engine Operation and Performance
,” ASME Paper No. GT2004-53788.
15.
Badeer
,
G. H.
, 2000, “
GE Aeroderivative Gas Turbines—Design and Operating Features
,” GE Power Systems, GER 3695E.
16.
Jones
,
C.
, and
Jacobs
,
J. A.
, 2000, “
Economics and Technical Considerations for Combined-Cycle Performance-Enhancement Options
,” GE Power Systems, GER-4200.
17.
Smith
,
E.
, 2000, “
Wet Compression: Gas Turbine Power Output Enhancement for Peak-Load Demand
,” Power Journal International, pp.
29
32
.
18.
Willems
,
D. E.
, and
Ritland
,
P. D.
, 2003, “
A Pragmatic Approach to Evaluation of Inlet Fogging System Effectiveness
,” International Joint Power Generation Conference, Atlanta, Georgia, 16–19 June, Paper No. IJPGC 2003-40075.
19.
Walsh
,
P. P.
,
Mathieson
,
D.
,
Bicknell
,
G.
, and
Matthews
,
K.
, 2000, “
Inlet Fog Boost Technology Acquisition Programme
,” Power-Gen Europe.
20.
Hoffman
,
J.
, and
McKay
,
T.
, 2004, “
Customer Benefits of Air Inlet Cooling and ALFog Fogging and High Fogging
,” Power-Gen Far East, October.
21.
Lecheler
,
S.
,
Florjancic
,
S.
, and
Cataldi
,
G.
, 2004, “
Fogging and High Fogging: ALSTOM’s Experience and Customer Benefits
,” Power-Gen Europe.
22.
Ingistov
,
S.
, 2000, “
Fog System Performance in Power Augmentation of Heavy Duty Power Generating Gas Turbines Model 7EA
,” ASME Paper No. 2000-GT-305.
23.
Nolan
,
J. P.
, and
Twombly
,
V. J.
, 1990, “
Gas Turbine Performance Improvement Direct Mixing Evaporative Cooling System
,” ASME Paper No. 90-GT-368.
24.
Combined Cycle Journal, 2004, “
Wet Compression
,” Second Quarter.
25.
Gajjar
,
H.
,
Chaker
,
M.
,
Dighe
,
A.
, and
Meher-Homji
,
C. B.
, 2003, “
Inlet Fogging For a 655MW Combined Cycle Power Plant — Design, Implementation and Operating Experience
,” ASME Paper No. GT2003-38757.
26.
Gajjar
,
H.
,
Modi
,
A.
,
Bathija
,
D.
, and
Jain
,
S.
, 2002, “
Gas Turbine Inlet Air Cooling: GPEC’s Experience
,” 11th V94.2 User’s Meeting, Vadodara, India, October.
You do not currently have access to this content.