Widespread usage of gas foil bearings (FBs) into microturbomachinery to midsize gas turbine engines requires accurate performance predictions anchored to reliable test data. This paper presents a simple yet accurate model predicting the static and dynamic force characteristics of gas FBs. The analysis couples the Reynolds equation for a thin gas film to a simple elastic foundation model for the top foil and bump strip layer. An exact flow advection model is adopted to solve the partial differential equations for the zeroth- and first-order pressure fields that render the FB load capacity and frequency-dependent force coefficients. As the static load imposed on the foil bearing increases, predictions show that the journal center displaces to eccentricities exceeding the bearing nominal clearance. A nearly constant FB static stiffness, independent of journal speed, is estimated for operation with large loads, and approaching closely the bearing structural stiffness derived from contact operation without rotor spinning. Predicted minimum film thickness and journal attitude angle demonstrate good agreement with archival test data for a first-generation gas FB. The bump-foil-strip structural loss factor, exemplifying a dry-friction dissipation mechanism, aids to largely enhance the bearing direct damping force coefficients. At high loads, the bump-foil structure influences most the stiffness and damping coefficients. The predictions demonstrate that FBs have greatly different static and dynamic force characteristics when operating at journal eccentricities in excess of the bearing clearance from those obtained for operation at low loads, i.e., small journal eccentricity.

1.
Heshmat
,
H.
, and
Hermel
,
P.
, 1993, “
Compliant Foil Bearings Technology and Their Application to High Speed Turbomachinery
,”
Thin Films in Tribology
,
D.
Dowson
et al.
, eds. (Elsevier Tribology Series, Vol.
25
),
Elsevier
,
Amsterdam
, pp.
559
575
.
2.
Agrawal
,
G. L.
, 1997, “
Foil Air∕Gas Bearing Technology: An Overview
,” ASME Paper No. 97-GT-347.
3.
DellaCorte
,
C.
, and
Valco
,
M. J.
, 2000, “
Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications
,” NASA∕TM, Report No. 2000-209782.
4.
Heshmat
,
H.
, 1994, “
Advancements in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capacity
,”
ASME J. Tribol.
0742-4787,
116
, pp.
287
295
.
5.
DellaCorte
,
C.
,
Lukaszewicz
,
V.
,
Valco
,
M. J.
,
Radil
,
K. C.
, and
Heshmat
,
H.
, 2000, “
Performance and Durability of High Temperature Foil Air Bearings for Oil-Free Turbomachinery
,” NASA∕TM, Report No. 2000-209187∕REV1.
6.
Lee
,
Y. B.
,
Kim
,
T. H.
,
Kim
,
C. H.
,
Lee
,
N. S.
, and
Choi
,
D. H.
, 2003, “
Unbalance Response of a Super-Critical Rotor Supported by Foil Bearings: Comparison With Test Results
,”
Tribol. Trans.
1040-2004,
47
, pp.
54
60
.
7.
Lee
,
Y. B.
,
Kim
,
T. H.
,
Kim
,
C. H.
,
Lee
,
N. S.
, and
Choi
,
D. H.
, 2004, “
Dynamic Characteristics of a Flexible Rotor System Supported by a Viscoelastic Foil Bearing (VEFB)
,”
Tribol. Int.
0301-679X,
37
, pp.
679
687
.
8.
Heshmat
,
H.
,
Walowit
,
J. A.
, and
Pinkus
,
O.
, 1983, “
Analysis of Gas-Lubricated Foil Journal Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
105
, pp.
647
655
.
9.
Heshmat
,
H.
,
Walowit
,
J. A.
, and
Pinkus
,
O.
, 1983, “
Analysis of Gas Lubricated Compliant Thrust Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
105
, pp.
638
646
.
10.
Peng
,
J.-P.
, and
Carpino
,
M.
, 1993, “
Calculation of Stiffness and Damping Coefficients for Elastically Supported Gas Foil Bearings
,”
ASME J. Tribol.
0742-4787,
115
, pp.
20
27
.
11.
Carpino
,
M.
,
Medvetz
,
L. A.
, and
Peng
,
J.-P.
, 1994, “
Effects of Membrane Stresses in the Prediction of Foil Bearing Performance
,”
Tribol. Trans.
1040-2004,
37
, pp.
43
50
.
12.
Peng
,
J.-P.
, and
Carpino
,
M.
, 1997, “
Finite Element Approach to the Prediction of Foil Bearing Rotor Dynamic Coefficients
,”
ASME J. Tribol.
0742-4787,
119
, pp.
85
90
.
13.
San Andrés
,
L.
, 1995, “
Turbulent Flow Foil Bearings for Cryogenic Applications
,”
ASME J. Tribol.
0742-4787,
117
, pp.
185
195
.
14.
Iordanoff
,
I.
, 1999, “
Analysis of an Aerodynamic Compliant Foil Thrust Bearing: Method for a Rapid Design
,”
ASME J. Tribol.
0742-4787,
121
, pp.
816
822
.
15.
Khonsari
,
M. M.
, and
Peng
,
Z.-C.
, 2004, “
Hydrodynamic Analysis of Compliant Foil Bearing With Compressible Air Flow
,”
ASME J. Tribol.
0742-4787,
126
, pp.
542
546
.
16.
Ruscitto
,
D.
,
Mc Cormick
,
J.
, and
Gray
,
S.
, 1978, “
Hydrodynamic Air Lubricated Compliant Surface Bearing for an Automotive Gas Turbine Engine I-Journal Bearing Performance
,” NASA, Report No. CR-135368.
17.
Carpino
,
M.
, and
Talmage
,
G.
, 2003, “
A Fully Coupled Finite Element Formulation for Elastically Supported Foil Journal Bearings
,”
Tribol. Trans.
1040-2004,
46
, pp.
560
565
.
18.
Faria
,
M.
, and
San Andrés
,
L.
, 2000, “
On the Numerical Modeling of High speed Hydrodynamic Gas Bearing
,”
ASME J. Tribol.
0742-4787,
122
, pp.
124
130
.
19.
Heshmat
,
H.
,
Shapiro
,
W.
, and
Gray
,
S.
, 1982, “
Development of Foil Journal Bearings for High Load Capacity and High Speed Whirl Stability
,”
ASME J. Lubr. Technol.
0022-2305,
104
, pp.
149
156
.
20.
Chen
,
H. M.
,
Howarth
,
R.
,
Geren
,
B.
,
Theilacker
,
J. C.
, and
Soyars
,
W. M.
, 2000, “
Application of Foil Bearings to Helium Turbocompressor
,”
Proceedings of the 30th Turbomachinery Symposium
, pp.
103
113
.
21.
Rubio
,
D.
, and
San Andrés
,
L.
, 2006, “
Bump-Type Foil Bearing Structural Stiffness: Experiments and Predictions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
, pp.
653
660
.
22.
Ku
,
C.-P. R.
, 1993, “
An Experimental and Theoretical Study of the Dynamic Structural Stiffness in Compliant Foil Journal Bearings
,”
ASME 14th Biennial Conference on Mechanical Vibration and Noise
,
Albuquerque, NM
, DE-Vol.
63
,
ASME
,
New York
, pp.
83
88
.
23.
Kim
,
T. H.
, 2006, “
Analysis of Gas Foil Bearings Integrating 1D and 2D Finite Element Structural Models: Predictions Compared to Test Data
,” ASME Paper No. IMECE2006–16375.
You do not currently have access to this content.