This paper presents a review of recent advances in nuclear-based hydrogen production with a thermochemical copper-chlorine cycle. Growing attention has focused on thermochemical water decomposition as a promising alternative to steam-methane reforming for a sustainable future method of large-scale hydrogen production. Recent advances in specific processes within the Cu–Cl cycle will be presented, particularly for overall heat requirements of the cycle, preferred configurations of the oxygen cell, disposal of molten salt, electrochemical process of copper electrowinning, and safety/reliability assessment of the systems. An energy balance for each individual process is formulated and results are presented for heat requirements of the processes.

1.
McQuillan
,
B. W.
,
Brown
,
L. C.
,
Besenbruch
,
G. E.
,
Tolman
,
R.
,
Cramer
,
T.
,
Russ
,
B. E.
,
Vermillion
,
B. A.
,
Earl
,
B.
,
Hsieh
,
H. T.
,
Chen
,
Y.
,
Kwan
,
K.
,
Diver
,
R.
,
Siegal
,
N.
,
Weimer
,
A.
,
Perkins
,
C.
,
Lewandowski
,
A.
, “
High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water: Annual Report
,” General Atomics, Report No. GA-A24972.
2.
Lewis
,
M.
, and
Taylor
,
A.
, 2006, “
High Temperature Thermochemical Processes
,” DOE Hydrogen Program.
3.
Sakurai
,
M.
,
Nakajima
,
H.
,
Amir
,
R.
,
Onuki
,
K.
, and
Shimizu
,
S.
, 2000, “
Experimental Study on Side-Reaction Occurrence Condition in the Iodine-Sulfur Thermochemical Hydrogen Production Process
,”
Int. J. Hydrogen Energy
,
25
, pp.
613
619
. 0360-3199
4.
Schultz
,
K.
, 2003, “
Thermochemical Production of Hydrogen From Solar and Nuclear Energy
,” Technical Report for the Stanford Global Climate and Energy Project, General Atomics.
5.
2002,
Fuel Cell Vehicles: Race to a New Automotive Future
,
US Department of Commerce
,
Washington, DC
.
6.
Sadhankar
,
R. R.
,
Li
,
J.
,
Li
,
H.
,
Ryland
,
D.
, and
Suppiah
,
S.
, 2005, “
Hydrogen Generation Using High-Temperature Nuclear Reactors
,”
55th Canadian Chemical Engineering Conference
, Toronto, Canada, Oct.
7.
Lewis
,
M. A.
, and
Miller
,
A.
, 2004, “
Lower Temperature Thermochemical Hydrogen Production
,” Project No. 2004–007-C, International Nuclear Energy Research Initiative, U.S. Department of Energy, Washington, DC.
8.
Carty
,
R. H.
,
Mazumder
,
M.
,
Schreider
,
J. D.
, and
Panborn
,
J. B.
, 1981, “
Thermochemical Hydrogen Production
,” Gas Research Institute for the Institute of Gas Technology, GRI Report No. 80–0023.
9.
Hakuta
,
T.
,
Haraya
,
K.
,
Sako
,
T.
,
Ito
,
N.
,
Yoshitome
,
H.
,
Todo
,
N.
, and
Kato
,
J.
, 1980, “
A Study on the Magnesium-Iodine Thermochemical Cycle for the Production of Hydrogen
,”
Hydrogen Energy Conference
, Vol.
1
(A81-42851 20-44),
Pergamon Press
,
Oxford
, pp.
311
324
.
10.
Knoche
,
K. F.
,
Schuster
,
P.
, and
Ritterbex
,
T.
, 1984, “
Thermochemical Production of Hydrogen by a Vanadium/Chlorine Cycle. II: Experimental Investigation of the Individual Reactions
,”
Int. J. Hydrogen Energy
,
9
, pp.
473
482
. 0360-3199
11.
Granovskii
,
M.
,
Dincer
,
I.
,
Rosen
,
M. A.
, and
Pioro
,
I.
, 2007, “
Exergy Analysis of a System Using a Chemical Heat Pump to Link a Supercritical Water-Cooled Nuclear Reactor With a Thermochemical Water Splitting Cycle
,”
13th International Conference on Emerging Nuclear Systems
, Istanbul, Turkey, Jun. 3–8.
12.
Mathias
,
P.
, 2006, “
Modeling of the Copper Chloride Thermochemical Cycle
,” Argonne National Laboratory, Argonne, IL.
13.
Wang
,
Z.
,
Naterer
,
G. F.
, and
Gabriel
,
K.
, 2007, “
Hydrogen Production With a Cu-Cl Cycle: Analysis of Thermal Efficiency
,”
Canadian Hydrogen Workshop on Hydrogen Production From Non-Fossil Sources
, Oshawa, ON, Canada, May 30.
14.
Stamatelatos
,
M.
, and
Vesely
,
W.
, 2002,
Fault Tree Handbook With Aerospace Applications, Version 1.1
,
NASA Headquarters
,
Washington, DC
.
15.
Sinnamon
,
R. M.
, and
Andrews
,
J. D.
, 1997, “
New Approaches to Evaluating Fault Trees
,”
Reliab. Eng. Syst. Saf.
,
58
, pp.
89
96
. 0951-8320
16.
Sun
,
H.
, and
Andrews
,
J. D.
, 2004, “
Identification of Independent Modules in Fault Tree Which Contain Dependent Basic Events
,”
Reliab. Eng. Syst. Saf.
,
86
, pp.
285
296
. 0951-8320
17.
Amari
,
S. V.
, and
Akers
,
J. B.
, 2004, “
Reliability Analysis of Large Fault Tree Using the Vesely Failure Rate
,”
IEEE Reliability and Maintainability, 2004 Annual Symposium-RAMS
, Jan., Vol.
26
, pp.
391
396
.
18.
Billinton
,
R.
, and
Allan
,
R.
, 1983,
Reliability Evaluation of Engineering Systems
,
Plenum
,
London
.
19.
Lewis
,
M. A.
,
Masin
,
J. G.
, and
Vilim
,
R. B.
, 2005, “
Development of the Low Temperature Cu-Cl Thermochemical Cycle
,”
International Congress on Advances in Nuclear Power Plants
, Korea, May 15–19.
20.
Dhillon
,
B. S.
, 2000,
Medical Device Reliability and Associated Areas
,
CRC
,
Boca Raton, FL
.
21.
Amari
,
S. V.
, 2000, “
Generic Rules to Evaluate System-Failure Frequency
,”
IEEE Trans. Reliab.
,
49
, pp.
85
89
. 0018-9529
You do not currently have access to this content.