Flame transfer function measurements of turbulent premixed flames are made in a model lean-premixed, swirl-stabilized, gas turbine combustor. OH, CH, and CO2 chemiluminescence emissions are measured to determine heat release oscillation from a whole flame, and the two-microphone technique is used to measure inlet velocity fluctuation. 2D CH chemiluminescence imaging is used to characterize the flame shape: the flame length (LCHmax) and flame angle (α). Using H2-natural gas composite fuels, XH2=0.000.60, a very short flame is obtained and hydrogen enrichment of natural gas is found to have a significant impact on the flame structure and flame attachment points. For a pure natural gas flame, the flames exhibit a “V” structure, whereas H2-enriched natural gas flames have an “M” structure. Results show that the gain of M flames is much smaller than that of V flames. Similar to results of analytic and experimental investigations on the flame transfer function of laminar premixed flames, it shows that the dynamics of a turbulent premixed flame is governed by three relevant parameters: the Strouhal number (St=LCHmax/Lconv), the flame length (LCHmax), and the flame angle (α). Two flames with the same flame shape exhibit very similar forced responses, regardless of their inlet flow conditions. This is significant because the forced flame response of a highly turbulent, practical gas turbine combustor can be quantitatively generalized using the nondimensional parameters, which collapse all relevant input conditions into the flame shape and the Strouhal number.

1.
Lee
,
J. G.
, and
Santavicca
,
D. A.
, 2003, “
Experimental Diagnostics for the Study of Combustion Instabilities in Lean Premixed Combustors
,”
J. Propul. Power
0748-4658,
19
(
5
), pp.
735
750
.
2.
Candel
,
S.
, 2002, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
1
28
.
3.
Polifke
,
W.
, and
Lawn
,
C.
, 2007, “
On the Low-Frequency Limit of Flame Transfer Functions
,”
Combust. Flame
0010-2180,
151
, pp.
437
451
.
4.
Balachandran
,
R.
,
Ayoola
,
B. O.
,
Kaminski
,
C. F.
,
Dowling
,
A. P.
, and
Mastorakos
,
E.
, 2005, “
Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combust. Flame
0010-2180,
143
, pp.
37
55
.
5.
Bellows
,
B. D.
,
Neumeier
,
Y.
, and
Lieuwen
,
T.
, 2006, “
Forced Response of a Swirling, Premixed Flame to Flow Disturbances
,”
J. Propul. Power
0748-4658,
22
, pp.
1075
1084
.
6.
Kulsheimer
,
C.
, and
Buchner
,
H.
, 2002, “
Combustion Dynamics of Turbulent Swirling Flames
,”
Combust. Flame
0010-2180,
131
, pp.
70
84
.
7.
Lieuwen
,
T.
, and
Neumeier
,
Y.
, 2002, “
Nonlinear Pressure-Heat Release Transfer Function Measurements in a Premixed Combustor
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
99
105
.
8.
You
,
D.
,
Huang
,
Y.
, and
Yang
,
V.
, 2005, “
A Generalized Model of Acoustic Response of Turbulent Premixed Flame and Its Application to Gas-Turbine Combustion Instability Analysis
,”
Combust. Sci. Technol.
0010-2202,
177
, pp.
1109
1150
.
9.
Preetham
,
S. H.
, and
Lieuwen
,
T.
, 2007, “
Response of Turbulent Premixed Flames to Harmonic Acoustic Forcing
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
1427
1434
.
10.
Hirsch
,
C.
,
Fanaca
,
D.
,
Reddy
,
P.
,
Polifke
,
W.
, and
Sattelmayer
,
T.
, 2005, “
Influence of the Swirler Design on the Flame Transfer Function of Premixed Flames
,”
ASME
Paper No. GT2005-68195.
11.
Armitage
,
C. A.
,
Balachandran
,
R.
,
Mastorakos
,
E.
, and
Cant
,
R. S.
, 2006, “
Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combust. Flame
0010-2180,
146
, pp.
419
436
.
12.
Sengissen
,
A. X.
,
Van Kampen
,
J. F.
,
Huls
,
R. A.
,
Stoffels
,
G. G. M.
,
Kok
,
J. B. W.
, and
Poinsot
,
T. J.
, 2007, “
LES and Experimental Studies of Cold and Reacting Flow in a Swirled Partially Premixed Burner With and Without Fuel Modulation
,”
Combust. Flame
0010-2180,
150
, pp.
40
53
.
13.
Gentemann
,
A.
,
Hirsch
,
C.
,
Kunze
,
K.
,
Kiesewetter
,
F.
,
Sattelmayer
,
T.
, and
Polifke
,
W.
, 2004, “
Validation of Flame Transfer Function Reconstruction for Perfectly Premixed Swirl Flames
,”
ASME
Paper No. GT2004-53776.
14.
Poinsot
,
T. J.
, and
Veynante
,
D. P.
, 2005,
Theoretical and Numerical Combustion
, 2nd ed.,
Edwards
,
Ann Arbor, MI
.
15.
Polifke
,
W.
,
Poncet
,
A.
,
Paschereit
,
C. O.
, and
Dobbeling
,
K.
, 2001, “
Reconstruction of Acoustic Transfer Matrices by Instationary Computational Fluid Dynamics
,”
J. Sound Vib.
0022-460X,
245
, pp.
483
510
.
16.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
, 2003, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and V-Flame Dynamics
,”
Combust. Flame
0010-2180,
134
, pp.
21
34
.
17.
Fleifil
,
M.
,
Annaswamy
,
A. M.
,
Ghoneim
,
Z. A.
, and
Ghoniem
,
A. F.
, 1996, “
Response of a Laminar Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability Results
,”
Combust. Flame
0010-2180,
106
, pp.
487
510
.
18.
Lieuwen
,
T.
, 2005, “
Nonlinear Kinematic Response of Premixed Flames to Harmonic Velocity Disturbances
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
1725
1732
.
19.
Waser
,
M. P.
, and
Crocker
,
M. J.
, 1984, “
Introduction to the Two-Microphone Cross-Spectral Method of Determining Sound Intensity
,”
Noise Control Eng. J.
0736-2501,
22
, pp.
76
85
.
20.
Abom
,
M.
, and
Boden
,
H.
, 1988, “
Error Analysis of Two-Microphone Measurements in Ducts With Flow
,”
J. Acoust. Soc. Am.
0001-4966,
83
, pp.
2429
2438
.
21.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
, 2003, “
Self-Induced Combustion Oscillations of Laminar Premixed Flames Stabilized on Annular Burners
,”
Combust. Flame
0010-2180,
135
, pp.
525
537
.
22.
Figura
,
L.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
, 2007, “
The Effects of Fuel Composition on Flame Structure and Combustion Dynamics in a Lean Premixed Combustor
,”
ASME
Paper No. GT2007-27298.
23.
Kim
,
D.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
, 2008, “
Effect of Flame Structure on the Flame Transfer Function in a Premixed Gas Turbine Combustor
,”
ASME
Paper No. GT2008-51014.
24.
Kim
,
K. T.
,
Lee
,
H. J.
,
Lee
,
J. G.
,
Quay
,
B.
, and
Santavicca
,
D.
, “
Flame Transfer Function Measurement and Instability Frequency Prediction Using a Thermoacoustic Model
,”
ASME
Paper No. GT2009-60026.
25.
Huang
,
Y.
, and
Yang
,
V.
, 2005, “
Effect of Swirl on Combustion Dynamics in a Lean-Premixed Swirl-Stabilized Combustor
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
1775
1782
.
26.
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
, 2000, “
Theoretical and Experimental Determination of the Transfer Function of a Laminar Premixed Flame
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
765
773
.
27.
Buchner
,
H.
,
Hirsch
,
C.
, and
Leuckel
,
W.
, 1993, “
Experimental Investigation on the Dynamics of Pulsated Premixed Axial Jet Flames
,”
Combust. Sci. Technol.
0010-2202,
94
, pp.
219
228
.
You do not currently have access to this content.