Positive displacement expanders are quickly gaining popularity in the fields of micropower generation and refrigeration engineering. Unlike turbomachines, expanders can handle two-phase flow applications at low speed and flow rate levels. This paper is concerned with a simple-design positive displacement expander based on the limaçon of Pascal. The paper offers an insight into the thermodynamic workings of the limaçon gas expander and presents a mathematical model to describe the manner in which the port locations affect the expander performance. A stochastic optimization technique is adopted to find the locations, for the expander ports, which produce best expander performance for given chamber dimensions. The operating speed and other parameters will be held constant during the optimization procedure. A case study is offered in this paper to prove the validity of the presented approach, and comments are given on how various operating parameters affect system performance in the limaçon design.

1.
Mathias
,
J. A.
,
Johnson
Jr.,
J. R.
,
Cao
,
J.
,
Priedeman
,
D. K.
, and
Christensen
,
R. N.
, 2009, “
Experimental Testing of Gerotor and Scroll Expanders Used in, and Energetic and Exergetic Modelling of, an Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
0195-0738,
131
(
3
), p.
012201
.
2.
Lemort
,
V.
,
Quoilin
,
S.
,
Cuevas
,
C.
, and
Lebrun
,
J.
, 2009, “
Testing and Modelling A Scroll Expander Integrated Into An Organic Rankine Cycle
,”
Appl. Therm. Eng.
1359-4311,
29
, pp.
3094
3102
.
3.
Saitoh
,
T.
,
Yamada
,
N.
, and
Wakashima
,
S. -i.
, 2007, “
Solar Rankine Cycle System Using Scroll Expander
,”
J. Environ. Eng.
0733-9372,
2
(
4
), pp.
708
719
.
4.
Smith
,
I. K.
, and
Stosic
,
N. R.
, 1995, “
The Expressor: An Efficiency Boost to Vapour Compression Systems by Power Recovery From the Throttling Process
,”
ASME Heat Pump and Refrigeration Systems Design, Analysis, and Applications
,
ASME
,
New York
,
AES-34
, pp.
173
181
.
5.
Xiaonjun
,
G.
,
Liansheng
,
L.
,
Yuanyang
,
Z.
, and
Pengcheng
,
S.
, 2004, “
Research on a Scroll Expander Used for Recovering Work in a Fuel Cell
,”
Int. J. Thermodyn.
1301-9724,
7
(
1
), pp.
1
8
.
6.
Lemort
,
V.
,
Quoilin
,
S.
, and
Pire
,
C.
, 2009, “
Experimental Investigation on a Hermetic Expander
,”
Proceedings of the Seventh International Conference on Compressors and Coolants
, Sept. 30–Oct. 2, Papiernička, Slovakia.
7.
Wang
,
H.
,
Peterson
,
R. B.
, and
Herron
,
T.
, 2009, “
Experimental Performance of a Compliant Scroll Expander for an Organic Rankine Cycle
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
223
(
7
), pp.
863
872
.
8.
Nagata
,
H.
,
Kakuda
,
M.
,
Sekiya
,
S.
,
Shimoji
,
M.
, and
Koda
,
T.
, 2010, “
Development of a Scroll Expander for the CO2 Refrigeration Cycle
,”
International Symposium on Next Generation Air Conditioning and Refrigeration Technology
, Tokyo, Japan, Feb. 17–19.
9.
Yang
,
B.
,
Peng
,
X.
,
Sun
,
S.
,
Guo
,
B.
, and
Xing
,
Z.
, 2009, “
Study of a Rotary Vane Expander for the Transcritical CO2 Cycle-Part I: Experimental Investigation
,”
HVAC&R Res.
,
15
(
4
), pp.
673
688
.
10.
Ertesvag
,
I. S.
, 2002, “
Analysis of the Vading Concept—A New Rotary-Piston Compressor, Expander and Engine Principle
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
216
, pp.
2041
2967
.
11.
Li
,
M.
,
Ma
,
Y.
, and
Tian
,
H.
, 2009, “
A Rolling Piston-Type Two-Phase Expander in the Transcritical CO2 Cycle
,”
HVAC&R Res.
,
15
(
4
), pp.
729
741
. 0002-7820
12.
Baek
,
J. S.
,
Groll
,
E. A.
, and
Lawless
,
P. B.
, 2005, “
Piston-Cylinder Work Producing Expansion Device in a Transcritical Carbon Dioxide Cycle. Part I: Experimental Investigation
,”
Int. J. Refrig.
0140-7007,
28
(
2
), pp.
141
151
.
13.
Zhang
,
B.
,
Peng
,
X.
,
He
,
Z.
, and
Shu
,
P.
, 2006, “
Development of a Double Acting Free Piston Expander for Power Recovery in Transcritical CO2 Cycle
,”
Appl. Therm. Eng.
1359-4311,
27
(
8–9
), pp.
1629
1636
.
14.
Vanyashov
,
A. D.
, and
Kovalenko
,
S. V.
, 2004, “
Determining the Principal Parameters of Piston Expansion Engines by Different Computational Methods
,”
Chem. Petrol. Eng.
,
40
(
9–10
), pp.
616
622
.
15.
Wang
,
J.
,
Pu
,
J.
,
Moore
,
P. R.
, and
Zhang
,
Z.
, 1998, “
Modelling Study and Servo-Control of Air Motor Systems
,”
Int. J. Control
0020-7179,
71
(
3
), pp.
459
476
.
16.
Wu
,
J.
,
Goldfarb
,
M.
, and
Barth
,
E.
, 2004, “
On the Observability of Pressure in a Pneumatic Servo Actuator
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
(
4
), pp.
921
924
.
17.
Yang
,
L.
,
Wang
,
J.
,
Mangan
,
S.
,
Derby
,
J. W.
, and
Lu
,
N.
, 2008, “
Mathematic Modelling and Energy Efficiency Analysis of a Scroll-type Air Motor
,”
IAENG Int. J. App. Maths
,
38
(
1
).
18.
Samuel
,
G. R.
, and
Misak
,
S.
, 2003, “
Performance of Positive Displacement Motor (PDM) Operating on Air
,”
ASME J. Energy Resour. Technol.
0195-0738,
125
(
6
), pp.
119
125
.
19.
Sultan
,
I. A.
, 2005, “
The Limaçon of Pascal: Mechanical Generation and Utilisation for Fluid Processing
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
219
(
8
), pp.
813
822
.
20.
Sultan
,
I. A.
, 2006, “
Profiling Rotors for Limaçon-to-Limaçon Compression-Expansion Machines
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
787
793
.
21.
Spall
,
J. C.
, 1992, “
Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation
,”
IEEE Trans. Autom. Control
0018-9286,
37
(
3
), pp.
332
341
.
22.
Kothandaraman
,
G.
, and
Rotea
,
M. A.
, 2005, “
Simultaneous-Perturbation Stochastic-Approximation Algorithm for Parachute Parameter Estimation
,”
J. Aircr.
0021-8669,
42
(
5
), pp.
1229
1235
.
23.
Sultan
,
I. A.
, 2008, “
Inverse Geometric Design for a Class of Rotary Positive Displacement Machines
,”
Inverse Probl. Sci. Eng.
1741-5977,
16
(
2
), pp.
127
139
.
24.
Peng
,
X.
,
Xing
,
Z.
, and
Shu
,
P.
, 2002, “
Thermodynamic Analysis of the Rotary Tooth Compressor
,”
Proc. Inst. Mech. Eng., IMechE Conf.
,
216
(
4
), pp.
321
327
.
You do not currently have access to this content.