Abstract

A combined cycle gas-turbine generating power and hydrogen is proposed and evaluated. The cycle embodies chemical looping combustion (CLC) and uses a Na based oxygen carrier. In operation, a stoichiometric excess of liquid Na is injected directly into the combustion chamber of a gas-turbine cycle, where it is burnt in compressed O2 produced in an external air separation unit (ASU). The resulting combustion chamber exit stream consists of hot Na vapor and this is expanded in a turbine. Liquid Na2O oxide is also generated in the combustion process but this can be separated, readily, from the Na vapor and collects in a pool at the bottom of the reactor. To regenerate liquid Na from Na2O, and hence complete the chemical loop, a reduction reactor (the reducer) is fed with three streams: the hot Na2O from the oxidizer, the Na vapor (plus some entrained wetness) exiting a Na-turbine, and a stream of solid fuel, which is assumed to be pure carbon for simplicity. The sensible heat content of the liquid Na2O and latent and sensible heat of the Na vapor provide the heat necessary to drive the endothermic reduction reaction and ensure the reducer is externally adiabatic. The exit gas from the reducer consists of almost pure CO, which can be used to generate byproduct H2 using the water-gas shift reaction. A mass and energy balance of the system is conducted assuming reactions reach equilibrium. The analysis allows for losses associated with turbomachinery; heat exchangers are assumed to operate with a finite approach temperature. However, pressure losses in equipment and pipework are assumed negligible—a reasonable assumption for this type of analysis that will still yield meaningful data. The analysis confirms that the combustion chamber exit temperature is limited by both first and second law considerations to a value suitable for a practical gas-turbine. The analysis also shows that the overall efficiency of the cycle, under optimum conditions and taking into account the work necessary to drive the ASU, can exceed 75%.

1.
Ishida
,
M.
,
Zheng
,
D.
, and
Akehata
,
T.
, 1987, “
Evaluation of a Chemical-Looping-Combustion Power-Generation System by Graphic Exergy Analysis
,”
Energy
0360-5442,
12
, pp.
147
154
.
2.
Ishida
,
M.
, and
Jin
,
N.
, 1997, “
CO2 Recovery in a Power Plant With Chemical Looping Combustion
,”
Energy Convers. Manage.
0196-8904,
38
, pp.
S187
S192
.
3.
Brandvoll
,
Ø.
, and
Bolland
,
O.
, 2004, “
Inherent CO2 Capture Using Chemical Looping Combustion in a Natural Gas Fired Cycle
,”
Trans. ASME
0097-6822,
126
, pp.
316
321
.
4.
Mattisson
,
T.
,
Zafar
,
Q.
,
Johansson
,
M.
, and
Lyngfelt
,
A.
, 2006, “
Chemical-Looping Combustion as a New CO2 Management Technology
,”
First Regional Symposium on Carbon Management
, Dhahran, Saudi Arabia, pp.
1
19
.
5.
Richter
,
H. J.
, and
Knoche
,
K. F.
, 1983, “
Reversibility of Combustion Processes, Efficiency and Costing—Second Law Analysis of Processes
,”
American Chemical Society Symposium Series
, Paper No. 235, pp.
71
85
.
6.
McGlashan
,
N. R.
, 2008, “
Chemical Looping Combustion—A Thermodynamic Study
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
222
, pp.
1005
1019
.
7.
McGlashan
,
N. R.
,
Childs
,
P. R. N.
,
Heyes
,
A. L.
, and
Marquis
,
A. J.
, 2010, “
Producing Hydrogen and Power Using Chemical Looping Combustion and Water-Gas Shift
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
132
, p.
031401
.
8.
Lamoreaux
,
R. H.
, and
Hildenbrand
,
D. L.
, 1984, “
High Temperature Vaporization Behaviour of Oxides. I. Alkali Metal Binary Oxides
,”
J. Phys. Chem. Ref. Data
0047-2689,
13
, pp.
151
173
.
9.
Dillon
,
D. J.
,
Panesar
,
R. S.
,
Wall
,
R. A.
,
Allam
,
R. J.
,
White
,
V.
,
Gibbins
,
J.
, and
Haines
,
M. R.
, 2004, “
Potential for Improvement in Power Generation With Post-Combustion Capture of CO2
,”
Seventh International Conference on Greenhouse Gas Control Technologies
, Vancouver.
10.
Skaperdas
,
G. T.
, 1967, “
Commercial Potential for the Kellogg Coal Gasification Process—Final Report
,” M.W. Kellogg Co., Piscataway.
11.
Rummel
,
R.
, 1959, “
Gasification in a Slag Bath
,”
Coke Gas
,
21
, pp.
493
501
.
12.
Borgstedt
,
H. U.
, and
Guminskib
,
C.
, 2001, “
IUPAC-NIST Solubility Data Series. 75. Nonmetals in Liquid Alkali Metals
,”
J. Phys. Chem. Ref. Data
0047-2689,
30
(
4
), pp.
835
1158
.
13.
Maier
,
C. G.
, 1930, “
Zinc Smelting From a Chemical and Thermodynamic Viewpoint
,” U.S. Bureau of Mines Bulletin No. 324.
14.
McGlashan
,
N. R.
, “
Reactor Equilibrium in a Na Based Chemical Looping Combustion System
,” unpublished.
15.
Berkowitz
,
N.
, 1979,
An Introduction to Coal Technology
, 1st ed.,
Academic
,
New York
, pp.
274
275
.
16.
Perkins
,
R. A.
, 1983, “
Materials for Syngas Coolers of Entrained Slagging Gasifiers
,”
Corrosion Resistant Materials for Coal Conversion Systems
,
D. B.
Meadowcroft
and
M. I.
Manning
,
Applied Science
,
London
, pp.
219
258
.
17.
Strafford
,
K. N.
, and
Jenkinson
,
D.
, 1983, “
The High Temperature Degradation of Some Refractory Metals in Hydrogen-Sulphur Atmospheres
,”
Corrosion Resistant Materials for Coal Conversion Systems
,
D. B.
Meadowcroft
and
M. I.
Manning
,
Applied Science
,
London
, pp.
551
584
.
18.
Strafford
,
K. N.
, and
Hunt
,
P. J.
, 1979, “
The Influence of Temperature on the Corrosion of a Ni-Cr-Zr Alloy in an Oxygen-Sulphur Dioxide Environment and the Mechanism of Accelerated Attack
,”
Corros. Sci.
0010-938X,
19
, pp.
1089
1103
.
19.
Borchers
,
W.
, 1908,
Electric Furnaces: The Production of Heat From Electrical Energy and the Construction of Electric Furnaces
, 1st ed.,
Longmans, Green
,
London
.
20.
Cage
,
J. F.
, Jr.
, 1957, “
Sodium Handling Equipment
,”
Handling and Uses of the Alkali Metals
,
American Chemical Society
,
Washington, DC
, pp.
60
66
.
21.
El-Wakil
,
M. M.
, 1962,
Nuclear Power Engineering
, 1st ed.,
McGraw-Hill
,
New York
, pp.
433
460
.
22.
Bruggeman
,
W. H.
, and
Stone
,
H. E.
, 1955, “
Handling Liquid-Metal Coolants
,” Reactor Handbook: Engineering, U.S. Atomic Energy Commission, pp.
287
310
.
23.
Cage
,
J. F.
, and
Collins
,
G. D.
, 1955, “
Design and Construction of External Heat-Transfer Systems—Pumps and Valves
,” Reactor handbook: Engineering, U.S. Atomic Energy Commission, pp.
345
359
.
24.
Walter
,
A. E.
, and
Reynolds
,
A. B.
, 1981,
Fast Breeder Reactors
, 1st ed.,
Pergamon
,
New York
, pp.
6
7
,
472
477
,
468
471
,
441
442
, and
684
686
.
25.
Nerad
,
A. J.
, 1932, “
The Use of Mercury in Power Generation
,”
Trans. AICHE
,
28
, pp.
12
20
.
26.
Bevard
,
B. B.
, and
Yoder
,
G. L.
, 2003, “
Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible With Several Space Reactor Designs
,”
AIP Conf. Proc.
0094-243X,
654
, pp.
629
634
.
27.
Crane
,
R. I.
, 2004, “
Droplet Deposition in Steam Turbines
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
218
, pp.
859
870
.
28.
Wood
,
B.
, 1960, “
Wetness in Steam Cycles
,”
Proc. Inst. Mech. Eng.
0020-3483,
174
, pp.
491
534
.
29.
Phillips
,
W. M.
, 1970, “
Some Alkali Metal Corrosion Effects in a Rankine Cycle Test Loop
,”
Corrosion by Liquid Metals
,
J. E.
Draley
and
J. R.
Weeks
, eds.,
Plenum
,
New York
, pp.
197
215
.
30.
Koestel
,
A.
, and
Smith
,
C. M.
, 1964, “
Radiation Design Limitations for Dynamic Converters
,”
Combustion and Propulsion
,
Gordon and Breach
,
New York
, pp.
49
109
.
31.
Majumdar
,
S.
,
Sharma
,
I. G.
, and
Suri
,
A. K.
, 2008, “
Development of Oxidation Resistant Coatings on Mo–30W alloy
,”
Int. J. Refract. Met. Hard Mater.
0263-4368,
26
, pp.
549
554
.
32.
Klueh
,
R. L.
, 1970, “
Penetration of Refractory Metals by Alkali Metals
,”
Corrosion by Liquid Metals
,
J. E.
Draley
and
J. R.
Weeks
, eds.,
Plenum
,
New York
, pp.
177
196
.
33.
Tietz
,
T. E.
, and
Wilson
,
J. W.
, 1965,
Behaviour and Properties of the Refractory Metals
, 1st ed.,
Arnold
,
London
, pp.
34
37
.
34.
Harwood
,
J.
, 1958, “
The Protection of Molybdenum Against High-Temperature Oxidation
,”
The Metal Molybdenum
, 1st ed.,
J.
Harwood
, ed.,
American Society for Metals
,
Cleveland
, pp.
420
461
.
35.
Span
,
R.
, and
Wagner
,
W.
, 1997, “
On the Extrapolation Behaviour of Empirical Equations of State
,”
Int. J. Thermophys.
0195-928X,
18
, pp.
1415
1443
.
36.
Cooper
,
J. R.
, 1997, “
Release on the IAPWS Industrial Formulation 1997 for the Thermodynamics Properties of Water and Steam
,”
The International Association for the Properties of Water and Steam
, Lucerne, Switzerland.
37.
Younglove
,
B. A.
, 1982, “
Thermophysical Properties of Fluids. 1. Argon, Ethylene, Parahydrogen, Nitrogen, Nitrogen Trifluoride, and Oxygen
,”
J. Phys. Chem. Ref. Data
0047-2689,
11
, Suppl.
1
.
38.
Span
,
R.
, and
Wagner
,
W.
, 2003, “
Equations of State for Technical Applications I. Simultaneously Optimized Functional Forms for Nonpolar and Polar Fluids
,”
Int. J. Thermophys.
0195-928X,
24
, pp.
1
39
.
39.
Span
,
R.
, and
Wagner
,
W.
, 2003, “
Equations of State for Technical Applications II. Results for Nonpolar Fluids
,”
Int. J. Thermophys.
0195-928X,
24
, pp.
41
109
.
40.
Span
,
R.
, and
Wagner
,
W.
, 2003, “
Equations of State For Technical Applications III. Results for Polar Fluids
,”
Int. J. Thermophys.
0195-928X,
24
, pp.
111
162
.
41.
Lemmon
,
E. W.
, and
Span
,
R.
, 2006, “
Short Fundamental Equations of State for 20 Industrial Fluids
,”
J. Chem. Eng. Data
0021-9568,
51
, pp.
785
850
.
42.
Fink
,
J. K.
, and
Leibowitz
,
L.
, 1995, “
Thermodynamic and Transport Properties of Sodium Liquid and Vapor
,” Argonne National Laboratory Report No. ANL/RE-95/2.
43.
Browning
,
P.
, and
Potter
,
P. E.
, 1985, “
An Assessment of the Experimentally Determined Vapour Pressures of the Liquid Alkali Metals
,”
Handbook of Thermodynamic and Transport Properties of Alkali Metals
, 1st ed.,
R. W.
Ohse
, ed.,
Blackwell Scientific
,
Boston
.
44.
Stull
,
D. R.
and
Prophet
,
H.
, 1971,
JANAF Thermochemical Tables
, 2nd ed.,
National Bureau of Standards
,
Washington, DC
.
45.
Barin
,
I.
, and
Knacke
,
O.
, 1973,
Thermochemical Properties of Inorganic Substances
, 1st ed.,
Springer Verlag
,
Berlin
.
46.
Pankratz
,
L. B.
, 1982, “
Thermodynamic Properties of the Elements and Oxides
,” Bull. U.S. Bur. of Mines, No. 672, pp.
297
298
.
47.
Gordon
,
S.
, and
McBride
,
B. J.
, 1971, “
Computer Program for Calculations of Complex Chemical Equilibrium Compositions, Rocket Performances, Incident and Reflected Shocks, and Chapman–Jouguet Detonations
,”
NASA
Technical Report No. SP-273.
48.
Simpson
,
A. P.
, and
Simon
,
A. J.
, 2007, “
Second Law Comparison of Oxy-Fuel Combustion and Post-Combustion Carbon Dioxide Separation
,”
Energy Convers. Manage.
0196-8904,
48
, pp.
3034
3045
.
49.
Darde
,
A.
,
Prabhakarb
,
R.
,
Tranierc
,
J. P.
, and
Perrind
,
N.
, 2009, “
Air Separation and Flue Gas Compression and Purification Units for Oxy-Coal Combustion Systems
,”
Energy Procedia
,
1
, pp.
527
534
.
50.
Barton
,
P. I.
, and
Pantelides
,
C. C.
, 1994, “
Modelling of Combined Discrete/Continuous Processes
,”
AIChE J.
0001-1541,
40
, pp.
966
979
.
51.
Oh
,
M.
, and
Pantelides
,
C. C.
, 1996, “
A Modelling and Simulation Language for Combined Lumped and Distributed Parameter Systems
,”
Comput. Chem. Eng.
0098-1354,
20
, pp.
611
633
.
52.
Haywood
,
R. W.
, 1991,
Analysis of Engineering Cycles—Power, Refrigeration and Gas Liquefaction Plant
, 4th ed.,
Pergamon
,
Oxford
, pp.
38
42
.
You do not currently have access to this content.