This paper presents experimental measurements and computational predictions of surface and end wall heat transfer for a high-pressure (HP) nozzle guide vane operating as part of a full HP turbine stage in an annular rotating turbine facility, with and without inlet temperature distortion (hot streaks). A detailed aerodynamic survey of the vane surface is also presented. The test turbine was the unshrouded MT1 turbine, installed in the Turbine Test Facility (previously called Isentropic Light Piston Facility) at QinetiQ, Farnborough, UK. This is a short-duration facility, which simulates engine-representative M, Re, nondimensional speed, and gas-to-wall temperature ratio at the turbine inlet. The facility has recently been upgraded to incorporate an advanced second-generation combustor simulator, capable of simulating well-defined, aggressive temperature profiles in both the radial and circumferential directions. This work forms part of the pan-European research program, TATEF II. Measurements of HP vane and end wall heat transfer obtained with inlet temperature distortion are compared with results for uniform inlet conditions. Steady and unsteady computational fluid dynamics (CFD) predictions have also been conducted on vane and end wall surfaces using the Rolls-Royce CFD code HYDRA to complement the analysis of experimental results. The heat transfer measurements presented in this paper are the first of their kind in that the temperature distortion is representative of an extreme cycle point, and was simulated with good periodicity and with well-defined boundary conditions in the test turbine.

1.
Bunker
,
R. S.
, 2006, “
Gas Turbine Heat Transfer: 10 Remaining Hot Gas Path Challenges
,” ASME Paper No. GT2006-90002.
2.
Nikitopoulos
,
D. E.
,
Acharaya
,
S.
,
Oertling
,
J.
, and
Muldoon
,
F. H.
, 2006, “
On Active Control of Film-Cooling Flows
,” ASME Paper No. GT2006-90051.
3.
Nealy
,
D. A.
,
Mihelc
,
M. S.
,
Hylton
,
L. D.
, and
Gladden
,
H. J.
, 1984, “
Measurements of Heat Transfer Distribution Over the Surfaces of Highly Loaded Turbine Nozzle Guide Vanes
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
149
158
.
4.
Harvey
,
N. W.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Jones
,
T. V.
, 1989, “
Detailed Heat Transfer Measurements in Linear and Annular Cascades in the Presence of Secondary Flows
,” AGARD PEP Paper No. 74B, p.
24
.
5.
Harvey
,
N. W.
, and
Jones
,
T. V.
, 1990, “
Measurement and Calculation of Endwall Heat Transfer and Aerodynamics on a Nozzle Guide Vane in Annular Cascade
,” ASME Paper No. 90-GT-301.
6.
Langston
,
L. S.
, 2001, “
Secondary Flows in Turbines—A Review
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
11
26
, issue on heat transfer in gas turbine systems.
7.
Sieverding
,
C. H.
, 1985, “
Secondary Flows in Straight and Annular Turbine Cascades
,”
Thermodynamics and Fluids of Turbomachinery
(Nato Series, Vol.
2
),
A. S.
Ucer
,
P.
Stowe
, and
Ch.
Hirsch
, eds., pp.
621
664
.
8.
Gaugler
,
R. E.
, and
Russell
,
L. M.
, 1984, “
Comparison of Visualised Turbine Endwall Secondary Flows and Measured Heat Transfer Patterns
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
168
172
.
9.
Spencer
,
M. C.
,
Jones
,
T. V.
, and
Lock
,
G. D.
, 1996, “
Endwall Heat Transfer Measurements in an Annular Cascade of Nozzle Guide Vanes at Engine Representative Reynolds and Mach Numbers
,”
Int. J. Heat Fluid Flow
0142-727X,
17
, pp.
139
147
.
10.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Coupland
,
J.
, and
Jones
,
T. V.
, 1998, “
Measurement and Calculation of Nozzle Guide Vane Endwall Heat Transfer
,” ASME Paper No 98-GT-66.
11.
Kang
,
M. B.
, and
Thole
,
K. A.
, 2000, “
Flowfield Measurements in the Endwall Region of a Stator Vane
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
458
466
.
12.
Kang
,
M. B.
,
Kohli
,
A.
, and
Thole
,
K. A.
, 1999, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
558
568
.
13.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1999, “
The Design of an Improved Endwall Film-Cooling Configuration
,”
ASME J. Turbomach.
0889-504X,
121
(
4
), pp.
772
780
.
14.
Knost
,
D. G.
, and
Thole
,
K. A.
, 2004, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane
,” ASME Paper No. GT2004-53326.
15.
Thole
,
K. A.
, and
Knost
,
D. G.
, 2005, “
Heat Transfer and Film-Cooling for the Endwall of a First Stage Turbine Vane
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5255
5269
.
16.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Greogory-Smith
,
D. G.
, 2000, “
Nonaxisymmetric Turbine End Wall Design: Part I—Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
278
285
.
17.
Hartland
,
J.
,
Greogory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
, 2000, “
Nonaxisymmetric Turbine End Wall Design: Part II—Experimental Validation
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
286
293
.
18.
Chyu
,
M. K.
, 2001, “
Heat Transfer Near Turbine Nozzle Endwall
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
27
36
, issue on heat transfer in gas turbine systems.
19.
Hermanson
,
K. S.
, and
Thole
,
K. A.
, 2002, “
Effect of Nonuniform Inlet Conditions on Endwall Secondary Flows
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
623
631
.
20.
Krishnamoorthy
,
V.
, and
Sukhatme
,
S. P.
, 1989, “
The Effect of Freestream Turbulence on Gas Turbine Blade Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
497
501
.
21.
Mehendale
,
A. B.
,
Han
,
J. C.
, and
Ou
,
S.
, 1991, “
Influence of High Mainstream Turbulence on Leading Edge Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
113
, pp.
843
850
.
22.
Moss
,
R. W.
, and
Oldfield
,
M. L. G.
1992, “
Measurements of the Effects of Freestream Turbulence Length Scale on Heat Transfer
,” Paper No. ASME 92-GT-244.
23.
Van Fossen
,
G. J.
, and
Bunker
,
R. S.
, 2001, “
Augmentation of Stagnation Region Heat Transfer Due to Turbulence From a DLN Can Combustor
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
140
146
.
24.
Thole
,
K. A.
,
Radomsky
,
R. W.
,
Kang
,
M. B.
, and
Kohli
,
A.
, 2002, “
Elevated Freestream Turbulence Effects on Heat Transfer for a Gas Turbine Vane
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
137
147
.
25.
Nasir
,
S.
,
Carullo
,
J. S.
,
Thole
,
K. A.
,
Wu
,
H.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
, 2009, “
Effects of Large Scale High Freestream Turbulence and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
0889-504X,
131
, p.
021021
.
26.
Jenkins
,
S.
,
Varadarajan
,
K.
, and
Bogard
,
D. G.
, 2004, “
The Effects of High Mainstream Turbulence and Turbine Vane Film Cooling on the Dispersion of a Simulated Hot Streak
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
203
211
.
27.
Jenkins
,
S. C.
, and
Bogard
,
D. G.
, 2004, “
The Effects of the Vane and Mainstream Turbulence on Hot Streak Attenuation
,” ASME Paper No. GT2004-54022.
28.
Hilditch
,
M. A.
,
Smith
,
G. C.
, and
Chana
,
K. S.
, 2001,“
Measurements and Predictions of Endwall Heat Transfer in Two High Pressure Turbines
,” Presented at
RTO Applied Vehicle Technology Panel (AVT) Symposium
, Leon, Norway, May 7–11.
29.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
, 2007, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
32
43
.
30.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
, 2006, “
Effects of Combustor Exit Profiles on High Pressure Turbine Vane Aerodynamic and Heat Transfer
,” ASME Paper No. GT2006-90277.
31.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
, 2007, “
An Experimental Study of Combustor Exit Profile Shapes on Endwall Heat Transfer in High Pressure Turbine Vanes
,” ASME Paper No. GT2007-27156.
32.
Barringer
,
M. D.
,
Thole
,
K. A.
,
Polanka
,
M. D.
,
Clark
,
J. P.
, and
Koch
,
P. J.
, 2007, “
Migration of Combustor Exit Profiles Through High Pressure Turbine Vanes
,” ASME Paper No. GT2007-27157.
33.
Tallman
,
J. A.
,
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Tolpadi
,
A. K.
, and
Bergholz
,
R. F.
, 2009, “
Heat Transfer Measurements and Predictions for a Modern, High-Pressure, Transonic Turbine, Including Endwalls
,”
ASME J. Turbomach.
0889-504X,
131
, p.
021001
.
34.
Gundy-Burlet
,
K. L.
, and
Dorney
,
D. J.
, 1997, “
Influence of 3D Hot Streaks on Turbine Heat Transfer
,” ASME Paper No. 97-GT-422.
35.
Boyle
,
R. J.
, and
Giel
,
P. W.
, 1997, “
Prediction of Nonuniform Inlet Temperature Effects on Vane and Rotor Heat Transfer
,” Paper No. NASA-TM-107539.
36.
Prasad
,
D.
, and
Hendricks
,
G. J.
, 2000, “
A Numerical Study of Secondary Flow in Axial Turbines With Application to Radial Transport of Hot Streaks
,” ASME Paper No. 2000-GT-0448.
37.
He
,
L.
,
Menshikova
,
V.
, and
Haller
,
B. R.
, 2004, “
Influence of Hot Streak Circumferential Length-Scale in Transonic Turbine Stage
,” ASME Paper No. GT2004-53370.
38.
Martelli
,
F.
,
Adami
,
P.
,
Salvadori
,
S.
,
Chana
,
K. S.
, and
Castillon
,
L.
, 2008, “
Aerothermal Study of the Unsteady Flow Field in a Transonic Gas Turbine with Inlet Temperature Distortions
,” ASME Paper No. GT2008-50628.
39.
An
,
B.
,
Liu
,
J.
, and
Jiang
,
H.
, 2009, “
Numerical Investigation on Unsteady Effects of Hot Streak on Flow and Heat Transfer in a Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
131
, p.
031015
.
40.
Simone
,
S.
,
Montomoli
,
F.
,
Martelli
,
F. G.
,
Chana
.,
K. S.
,
Qureshi
,
I.
, and
Povey
,
T.
, 2010, “
Analysis on the Effect of a Non-Uniform Inlet Profile on Heat Transfer and Fluid Flow in Turbine Stages
,” ASME Paper No. GT2010-23526.
41.
Jones
,
T. V.
,
Schultz
,
D. L.
, and
Hendley
,
A. D.
, 1973, “
On the Flow in an Isentropic Light Piston Tunnel
,” MoD (Proc. Exec.), Aeronautical Research Council R&M No. 3731.
42.
Goodisman
,
M. I.
,
Oldfield
,
M. L. G.
,
Kingcombe
,
R. C.
,
Jones
,
T. V.
,
Ainsworth
,
R. W.
, and
Brooks
,
A. J.
, 1992, “
An Axial Turbobrake
,”
ASME J. Turbomach.
0889-504X,
114
(
2
), pp.
419
425
.
43.
Hilditch
,
M. A.
,
Fowler
,
A.
,
Jones
,
T. V.
,
Chana
,
K. S.
,
Oldfield
,
M. L. G.
,
Ainsworth
,
R. W.
,
Hogg
,
S. I.
,
Anderson
,
S. J.
, and
Smith
,
G. C.
, 1994, “
Installation of a Turbine Stage in the Pyestock Isentropic Light Piston Facility
,” ASME Paper No. 94-GT-277.
44.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Oldfield
,
M. L. G.
, 2003, “
The Design and Performance of a Transonic Flow Deswirling System: An Application of Current CFD Design Techniques Tested Against Model and Full-Scale Experiments
,”
Advances of CFD in Fluid Machinery Design
,
R. L.
Elder
,
A.
Tourlidakis
, and
M. K.
Yates
, eds.,
IMechE Professional Engineering
,
London
, pp.
65
94
.
45.
Povey
,
T.
, and
Qureshi
,
I.
, 2008, “
A Hot-Streak (Combustor) Simulator Suited to Aerodynamic Performance Measurements
,”
Proc. IMechE, Part G: J. Aerospace Engineering
,
222
(
G6
), pp.
705
720
.
46.
Povey
,
T.
, and
Qureshi
,
I.
, 2009, “
Developments in Hot-Streak Simulators for Turbine Testing
,”
ASME J. Turbomach.
0889-504X,
131
(
3
), p.
031009
.
47.
Chana
,
K. S.
, 1992, “
Heat Transfer and Aerodynamics of a High Rim Speed Turbine Nozzle Guide Vane With Profile End Walls
,” ASME Paper No. 92-GT-243.
48.
Povey
,
T.
, 2003, “
On Advances in Annular Cascade Techniques
,” Ph.D. thesis, Department of Engineering Science, University of Oxford, Oxford, UK.
49.
Beard
,
P. F.
, 2010, “
On Transient Turbine Efficiency Measurements With Engine Representative Inlet Flows
,” Ph.D. thesis, Department of Engineering Science, University of Oxford, Oxford, UK.
50.
Doorly
,
J. E.
, and
Oldfield
,
M. L. G.
, 1987, “
The Theory of Advanced Multi-Layer Thin Film Heat Transfer Gauges
,”
Int. J. Heat Mass Transfer
0017-9310,
30
(
6
), pp.
1159
1168
.
51.
Oldfield
,
M. L. G.
, 2008, “I
mpulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
0889-504X,
130
, p.
021023
.
52.
Oldfield
,
M. L. G.
,
Burd
,
H. J.
, and
Doe
,
N. G.
, 1984, “
Design of Wide-Bandwidth Analogue Circuits for Heat Transfer Instrumentation in Transient Tunnels
,”
Heat and Mass Transfer in Rotating Machinery
,”
Hemisphere
,
Washington, DC
, pp.
233
258
.
53.
Oldfield
,
M. L. G.
,
Jones
,
T. V.
, and
Schultz
,
D. L.
, 1978, “
On-Line Computer for Transient Turbine Cascade Instrumentation
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
AES-14
(
5
), pp.
738
749
.
54.
Moinier
,
P.
, and
Giles
,
M. B.
, 1998, “
Preconditioned Euler and Navier-Stokes Calculations on Unstructured Grids
,”
Proceedings of the Sixth ICFD Conference on Numerical Methods for Fluid Dynamics
, Oxford, UK.
55.
Moinier
,
P.
,
Mueller
,
J. -D.
, and
Giles
,
M. B.
, 2002, “
Edgebased Multigrid and Preconditioning for Hybrid Grids
,”
AIAA J.
0001-1452,
40
(
10
), pp.
1954
1960
.
56.
Martinelli
,
L.
, 1987, “
Calculations of Viscous Flows With a Multigrid Method
,” Ph.D. thesis, Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ.
57.
Mueller
,
J. -D.
, and
Giles
,
M. B.
, 1998, “
Edge-Based Multigrid Schemes for Hybrid Grids
,”
Proceedings of the Sixth ICFD Conference on Numerical Methods for Fluid Dynamics
, Oxford, UK.
58.
Munk
,
M.
, and
Prim
,
R. C.
, 1947, “
On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
33
, pp.
137
141
.
59.
Harvey
,
N. W.
, 1991, “
Heat Transfer on Nozzle Guide Vane End Walls
,” Ph.D. thesis, University of Oxford, Oxford, UK.
60.
Holman
,
J. P.
, 1992,
Heat Transfer
(
Mechanical Engineering Series
) 7th ed.,
McGraw-Hill
,
New York
, pp.
215
267
.
61.
White
,
F. W.
, 1991,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
62.
Fitt
,
A. D.
,
Forth
,
C. P. J.
,
Robertson
,
B. A.
, and
Jones
,
T. V.
, 1986, “
Temperature Ratio Effects in Compressible Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
0017-9310,
29
, pp.
159
164
.
You do not currently have access to this content.