Abstract

Reprocessing of used nuclear fuel and nuclear waste management are important issues for the sustainable development of nuclear energy. It is necessary to develop novel nuclear waste treatment technologies to meet the goal of minimizing the secondary liquid waste. Supercritical fluids are considered green solvents in chemical engineering process. Moreover, extraction of metal ions by supercritical fluid is achieved. It gains growing interest to treat nuclear waste using supercritical fluid extraction recently because it can greatly decrease the secondary liquid waste with high radioactivity. During the past 2 decades, extraction of actinides and lanthanides by supercritical fluid has been intensively studied in many countries, and many important progresses have been made. However, the prospect of industrial application of supercritical fluid extraction technology in nuclear waste management is still unclear. In this paper, extraction of actinides and lanthanides from various matrices or from their oxides by supercritical fluid including the experimental results, extraction mechanism, and kinetic process was reviewed. The engineering demonstration projects were introduced. The trend of industrial application of supercritical fluid extraction technology in nuclear waste management was also discussed.

1.
Leitner
,
W.
, 2002, “
Supercritical Carbon Dioxide as a Green Reaction Medium for Catalysis
,”
Acc. Chem. Res.
0001-4842,
35
, pp.
746
756
.
2.
Kiran
,
E.
, and
Levelt Sengers
,
J. M. H.
, 1993,
Supercritical Fluids: Fundamentals for Application
,
Kluwer Academic
,
Dordrecht
.
3.
Raveendran
,
P.
,
Ikushima
,
Y.
, and
Wallen
,
S. L.
, 2005, “
Polar Attributes of Supercritical Carbon Dioxide
,”
Acc. Chem. Res.
0001-4842,
38
, pp.
478
485
.
4.
Wai
,
C. M.
, 2006, “
Reprocessing Spent Nuclear Fuel With Supercritical Carbon Dioxide
,”
ACS Symp. Ser.
0097-6156,
933
, pp.
57
67
.
5.
Wai
,
C. M.
, 2006, “
Supercritical Fluid Extraction of Radionuclides: A Green Technology for Nuclear Waste Management
,”
ACS Symp. Ser.
0097-6156,
943
, pp.
161
170
.
6.
Laintz
,
K. E.
,
Wai
,
C. M.
,
Yonker
,
C. R.
, and
Smith
,
R. D.
, 1992, “
Extraction of Metal Ions From Liquid and Solid Materials by Supercritical Carbon Dioxide
,”
Anal. Chem.
0003-2700,
64
, pp.
2875
2878
.
7.
Laintz
,
K. E.
, and
Tachikawa
,
E.
, 1994, “
Extraction of Lanthanides From Acidic Solution Using Tributyl Phosphate Modified Supercritical Carbon Dioxide
,”
Anal. Chem.
0003-2700,
66
, pp.
2190
2193
.
8.
Wang
,
S. F.
, and
Wai
,
C. M.
, 2007, “
Transporting Metal Ions Using Reverse Micelles in Alcohol Modified Supercritical Carbon Dioxide
,”
J. Supercrit. Fluids
0896-8446,
40
, pp.
176
182
.
9.
Wang
,
S. F.
, 2004, “
Dissolution and Transport of Metal Species and Polar Compounds in Supercritical Carbon Dioxide and Potential Applications
,” Ph.D. thesis, University of Idaho, Moscow, ID.
10.
Lin
,
Y.
, and
Wai
,
C. M.
, 1994, “
Supercritical Fluid Extraction of Lanthanides With Fluorinated β-Diketone and Tributyl Phosphate
,”
Anal. Chem.
0003-2700,
66
, pp.
1971
1975
.
11.
Lin
,
Y.
,
Brauer
,
R. D.
,
Laintz
,
K. E.
, and
Wai
,
C. M.
, 1993, “
Supercritical Fluid Extraction of Lanthanides and Actinides From Solid Materials With a Fluorinated β-Diketone
,”
Anal. Chem.
0003-2700,
65
, pp.
2549
2551
.
12.
Lin
,
Y.
,
Wai
,
C. M.
,
Jean
,
F. M.
, and
Brauer
,
R. D.
, 1994, “
Supercritical Fluid Extraction of Thorium and Uranium Ions From Solid and Liquid Materials With Fluorinated β-Diketones and Tributyl Phosphate
,”
Environ. Sci. Technol.
0013-936X,
28
, pp.
1190
1193
.
13.
Kumar
,
P.
,
Pal
,
A.
,
Saxena
,
M. K.
, and
Ramakumar
,
K. L.
, 2007, “
Supercritical Fluid Extraction of Thorium From Tissue Paper Matrix Employing Organophosphorus Reagents
,”
Radiochim. Acta
0033-8230,
95
, pp.
701
708
.
14.
Iso
,
S.
,
Uno
,
S.
,
Meguro
,
Y.
,
Sasaki
,
T.
, and
Yoshida
,
Z.
, 2000, “
Pressure Dependence of Extraction Behavior of Plutonium(IV) and Uranium(VI) From Nitric Acid Solution to Supercritical Carbon Dioxide Containing Tributylphosphate
,”
Prog. Nucl. Energy
0149-1970,
37
, pp.
423
428
.
15.
Meguro
,
Y.
,
Iso
,
S.
, and
Yoshida
,
Z.
, 1998, “
Correlation Between Extraction Equilibrium of Uranium(VI) and Density of CO2 Medium in a HNO3/Supercritical CO2-Tributyl Phosphate System
,”
Anal. Chem.
0003-2700,
70
, pp.
1262
1267
.
16.
Shadrin
,
A.
,
Kamachev
,
V.
,
Murzin
,
A.
, and
Shafikov
,
D.
, 2007, “
Extraction of Nitric Acid and Uranyl Nitrate by TBP in HFC-134a
,”
J. Supercrit. Fluids
0896-8446,
42
, pp.
347
350
.
17.
Rao
,
A.
,
Kumar
,
P.
, and
Ramakumar
,
K. L.
, 2008, “
Study of Effects of Different Parameters on Supercritical Fluid Extraction of Uranium From Acidic Solutions Employing TBP as Co-Solvent
,”
Radiochim. Acta
0033-8230,
96
, pp.
787
798
.
18.
Lin
,
Y.
,
Smart
,
N. G.
, and
Wai
,
C. M.
, 1995, “
Supercritical Fluid Extraction of Uranium and Thorium From Nitric Acid Solutions With Organophosphorus Reagents
,”
Environ. Sci. Technol.
0013-936X,
29
, pp.
2706
2708
.
19.
Lin
,
Y. H.
, 1997, “
Supercritical Fluid Extraction and Chromatography of Heavy Metals, Lanthanides and Actinides
,” Ph.D. thesis, University of Idaho, Moscow, ID.
20.
Tomioka
,
O.
,
Enokida
,
Y.
, and
Yamamoto
,
I.
, 1998, “
Solvent Extraction of Lanthanides From Their Oxides With TBP in Supercritical Carbon Dioxide
,”
J. Nucl. Sci. Technol.
0022-3131,
35
, pp.
515
516
.
21.
Tomioka
,
O.
,
Enokida
,
Y.
, and
Yamamoto
,
I.
, 2002, “
Selective Recovery of Neodymium From Oxides by Direct Extraction Method With Supercritical CO2 Containing TBP-HNO3 Complex
,”
Sep. Sci. Technol.
0149-6395,
37
, pp.
1153
1162
.
22.
Shimizu
,
R.
,
Sawada
,
K.
,
Enokida
,
Y.
, and
Yamamoto
,
Y.
, 2005, “
Supercritical Fluid Extraction of Rare Earth Elements From Luminescent Material in Waste Fluorescent Lamps
,”
J. Supercrit. Fluids
0896-8446,
33
, pp.
235
241
.
23.
Tomioka
,
O.
,
Meguro
,
Y.
,
Enokida
,
Y.
,
Yamamoto
,
Y.
, and
Yoshida
,
Z.
, 2001, “
Dissolution Behavior of Uranium Oxides With Supercritical CO2 Using HNO3-TBP Complex as a Reactant
,”
J. Nucl. Sci. Technol.
0022-3131,
38
, pp.
1097
1102
.
24.
Trofimov
,
T. I.
,
Samsonov
,
M. D.
,
Lee
,
S. C.
,
Myasoedov
,
B. F.
, and
Wai
,
C. M.
, 2001, “
Dissolution of Uranium Oxides in Supercritical Carbon Dioxide Containing Tri-n-Butyl Phosphate and Thenoyltrifluoroacetone
,”
Mendeleev Commun.
0959-9436,
11
, pp.
129
130
.
25.
Sawada
,
K.
,
Uruga
,
K.
,
Koyama
,
T.
,
Shimada
,
T.
,
Mori
,
Y.
,
Enokida
,
Y.
, and
Yamamoto
,
I.
, 2005, “
Stoichiometric Relation for Extraction of Uranium From UO2 Powder Using TBP complex With HNO3 and H2O in Supercritical CO2
,”
J. Nucl. Sci. Technol.
0022-3131,
42
, pp.
301
304
.
26.
Trofimov
,
T. I.
,
Samsonov
,
M. D.
,
Kulyako
,
Y. M.
, and
Myasoedov
,
B. F.
, 2004, “
Dissolution and Extraction of Actinide Oxides in Supercritical Carbon Dioxide Containing the Complex of Tri-N-Butylphosphate With Nitric Acid
,”
C. R. Chim.
1631-0748,
7
, pp.
1209
1213
.
27.
Samsonov
,
M. D.
,
Trofimov
,
T. I.
, and
Kulyako
,
Y. M.
, and
Myasoedov
,
B. F.
, 2007, “
Recovery of Actinides From Their Dioxides Using Supercritical CO2 Containing the Adduct of Tributyl Phosphate With Nitric Acid
,”
Radiochemistry (Moscow, Russ. Fed.)
1066-3622,
49
, pp.
246
250
.
28.
Shimada
,
T.
,
Ogumo
,
S.
,
Ishihara
,
N.
,
Enokida
,
Y.
, and
Yamamoto
,
I.
, 2007, “
Concept and Feature of Reprocessing Plant by Direct Extraction Method Using Supercritical Fluid
,”
Transactions of the Atomic Energy Society of Japan
,
6
, pp.
214
224
.
29.
Shadrin
,
A.
,
Murzin
,
V.
,
Romanovsky
,
V.
,
Kamachev
,
V.
,
Bondin
,
V.
,
Bychko
,
S.
, and
Revenko
,
Yu.
, 2008, “
Conversion Oxide SNF Into Nitrates and Extraction of Main Components With TBP Solutions in Compressed Gases
,”
ATALANTE 2008
, Montpellier, France.
30.
Bondin
,
V. V.
,
Bychkov
,
S. I.
,
Efremov
,
I. G.
,
Revenko
,
Y. A.
,
Babain
,
V. A.
,
Murzin
,
A. A.
,
Romanovsky
,
V. N.
,
Fedorov
,
Y. S.
,
Shadrin
,
A. Y.
,
Ryabkova
,
N. V.
, and
Li
,
E. N.
, 2007, “
Conversion of Actinide and RE Oxides Into Nitrates and Their Recovery Into Fluids
,” Global 2007, pp.
1523
1529
.
31.
Sawada
,
K.
,
Hirabayashi
,
D.
, and
Enokida
,
Y.
, 2007, “
Extraction of Uranium From Spent Fuels Using Liquid Gases
,” Global 2007, pp.
1518
1522
.
32.
Kumar
,
P.
,
Rao
,
A.
, and
Ramakumar
,
K. L.
, 2009, “
Supercritical Fluid Extraction of Thorium From Tissue Paper Matrix Employing β-Diketones
,”
Radiochim. Acta
0033-8230,
97
, pp.
105
112
.
33.
Fox
,
R. V.
, and
Mincher
,
B. J.
, 2002,
Supercritical Fluid Extraction of Plutonium and Americium From Soil
,
Spectrum
; http://www.osti.gov/bridge/product.biblio.jsp?osti_id=911309http://www.osti.gov/bridge/product.biblio.jsp?osti_id=911309.
34.
Kumar
,
R.
,
Sivaraman
,
N.
,
Sujatha
,
K. ,
Srinivasan
,
T. G.
, and
Vasudeva Rao
,
P. R.
, 2007, “
Removal of Plutonium and Americium From Waste Matrices by Supercritical Carbon Dioxide Extraction
,”
Radiochim. Acta
0033-8230,
95
, pp.
577
584
.
35.
Kumar
,
R.
,
Sivaraman
,
N.
,
Vadivu
,
E. S.
,
Srinivasan
,
T. G.
, and
Vasudeva Rao
,
P. R.
, 2003, “
Complete Removal of Uranyl Nitrate From Tissue Matrix Using Supercritical Fluid Extraction
,”
Radiochim. Acta
0033-8230,
91
, pp.
197
202
.
36.
Lin
,
Y.
,
Wu
,
H.
,
Smart
,
N. G.
, and
Wai
,
C. M.
, 2001, “
Studies on In-Situ Chelation/Supercritical Fluid Extraction of Lanthanides and Actinides Using a Radiotracer Technique
,”
Sep. Sci. Technol.
0149-6395,
36
, pp.
1149
1162
.
37.
Lin
,
Y.
,
Liu
,
C. X.
, and
Wu
,
H.
, 2003, “
Supercritical Fluid Extraction of Toxic Heavy Metals and Uranium From Acidic Solutions With Sulfur-Containing Organophosphorus Reagents
,”
Ind. Eng. Chem. Res.
0888-5885,
42
, pp.
1400
1405
.
38.
Joung
,
S. N.
,
Yoon
,
S. J.
,
Kim
,
S. Y.
, and
Yoo
,
K. -P.
, 2000, “
Extraction of Lanthanide Ions From Aqueous Solution by Modified Supercritical CO2: Tri-n-Butylphosphate+CO2 and Bis-2-Ethylhexyl Phosphoric Acid +CO2
,”
J. Supercrit. Fluids
0896-8446,
18
, pp.
157
166
.
39.
Baaden
,
M.
,
Schurhammer
,
R.
, and
Wippff
,
G.
, 2002, “
Molecular Dynamics Study of the Uranyl Extraction by Tri-N-Butylphosphate (TBP): Demixing of Water/“Oil”/TBP Solutions With a Comparison of Supercritical CO2 and Chloroform
,”
J. Phys. Chem. B
1089-5647,
106
, pp.
434
441
.
40.
Mekki
,
S.
,
Wai
,
C. M.
,
Billard
,
I.
,
Moutiers
,
G.
,
Burt
,
J.
,
Yoon
,
B.
,
Wang
,
J. S.
,
Gaillard
,
C.
,
Ouadi
,
A.
, and
Hesemann
,
P.
, 2006, “
Extraction of Lanthanides From Aqueous Solution by Using Room-Temperature Ionic Liquid and Supercritical Carbon Dioxide in Conjunction
,”
Chem.-Eur. J.
0947-6539,
12
, pp.
1760
1766
.
41.
Wang
,
J. S.
,
Sheaff
,
C. N.
,
Yoon
,
B
.,
Addleman
,
S.
, and
Wai
,
C. M.
, 2009, “
Extraction of Uranium From Aqueous Solutions by Using Ionic Liquid and Supercritical Carbon Dioxide in Conjunction
,”
Chem.-Eur. J.
0947-6539,
15
, pp.
4458
4463
.
42.
Tian
,
G. X.
,
Liao
,
W. S.
,
Rao
,
L. F.
, and
Wai
,
C. M.
, 2009, “
Direct Dissolution of Lanthanide Oxides in Ionic Liquid Coupled With Supercritical CO2 Fluid Stripping
,”
Abstracts of 238th ACS National Meeting
.
43.
Enokida
,
Y.
,
Tomioka
,
O.
,
Lee
,
S. -C.
,
Rustenholtz
,
A.
, and
Wai
,
C. M.
, 2003, “
Characterization of a Tri-N-Butyl Phosphate-Nitric Acid Complex: A CO2-Soluble Extraction for Dissolution of Uranium Dioxide
,”
Ind. Eng. Chem. Res.
0888-5885,
42
, pp.
5037
5041
.
44.
Samsonov
,
M. D.
,
Wai
,
C. M.
,
Lee
,
S. C.
,
Kulyako
,
Y.
, and
Smart
,
N. G.
, 2001, “
Dissolution of Uranium Dioxide in Supercritical Fluid Carbon Dioxide
,”
Chem. Commun. (Cambridge)
1359-7345,
2001
, pp.
1868
1869
.
45.
Zhu
,
L.
,
Duan
,
W.
,
Xu
,
J.
, and
Zhu
,
Y.
, 2009, “
Kinetics of Reactive Extraction of Nd From Nd2O3 With TBP-HNO3 Complex in Supercritical Carbon Dioxide
,”
Chin. J. Chem. Eng.
1004-9541,
17
, pp.
214
218
.
46.
Kulyako
,
Y. M.
,
Trofimov
,
T. I.
, and
Samsonov
,
M. D.
, and
Myasoedov
,
B. F.
, 2007, “
Recovery of Actinides From Their Dioxides Using Organic Reagents Saturated With Nitric Acid
,”
Radiochemistry (Moscow, Russ. Fed.)
1066-3622,
49
, pp.
241
245
.
47.
Trofimov
,
T. I.
,
Samsonov
,
M. D.
,
Lee
,
S. C.
,
Smart
,
N. G.
, and
Wai
,
C. M.
, 2001, “
Ultrasound Enhancement of Dissolution Kinetics of Uranium Oxides in Supercritical Carbon Dioxide
,”
J. Chem. Technol. Biotechnol.
0268-2575,
76
, pp.
1223
1226
.
48.
Gibson
,
G.
, and
Katz
,
J. J.
, 1951, “
The Reaction of Uranium Oxides With Liquid Dinitrogen Tetroxide. Anhydrous Uranyl Nitrate
,”
J. Am. Chem. Soc.
0002-7863,
73
, pp.
5436
5438
.
49.
Addison
,
C. C.
, 1980, “
Dinitrogen Tetroxide, Nitric Acid, and Their Mixtures as Media for Inorganic Reactions
,”
Chem. Rev.
0009-2665,
80
, pp.
21
39
.
50.
Bonding
,
V. V.
,
Bychkov
,
S. I.
, and
Revenko
,
Y. A.
,
Efremov
,
I. G.
,
Murzin
,
A. A.
,
Shadrin
,
A. Y.
,
Babain
,
V. A.
,
Romanovskii
,
V. N.
, and
Kudryavtsev
,
E. G.
, 2008, “
Conversion of Uranium Dioxide and Real Spent Nuclear Fuel Into Nitrates
,”
Radiochemistry (Moscow, Russ. Fed.)
1066-3622,
50
, pp.
253
255
.
51.
Koegler
,
S. S.
, 2009, “
Industrial Application of an Innovative Process for Uranium Recovery From Incinerator Ash
,”
Abstracts of 238th ACS National Meeting
.
52.
Enokida
,
Y.
,
Sawada
,
K.
,
Shimada
,
T.
, and
Yamanoto
,
I.
, 2007, “
An Option Making for Nuclear Fuel Reprocessing by Using Supercritical Carbon Dioxide
,” Global 2007, Boise, ID, pp.
1029
1032
.
You do not currently have access to this content.