Abstract

The very high temperature gas-cooled reactor (VHTR), with dual capacities of highly efficient electricity generation and thermochemical production of hydrogen, is considered as one of the most promising Gen-IV nuclear systems. The primary candidate materials for construction of the intermediate heat exchanger (IHX) for the VHTR are alloy 617 and alloy 230. To have a better understanding of the degradation process during high temperature long-term service and to provide practical data for the engineering design of the IHX, aging experiments were performed on alloy 617 and alloy 230 at 900°C and 1000°C. Mechanical properties (hardness and tensile strength) and microstructure were analyzed on post-aging samples after different aging periods (up to 3000 h). Both alloys attained increased hardness during the early stages of aging and dramatically soften after extended aging times. Microstructural analysis including transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and electron backscatter diffraction was carried out to investigate the microstructure evolution during aging. A carbide particle precipitation, growth, and maturing process was observed for both alloys, which corresponds to the changes of the materials’ mechanical properties. Few changes in grain boundary character distribution and grain size distribution were observed after aging. In addition, high temperature corrosion studies were performed at 900°C and 1000°C for both alloys. Alloy 230 exhibits much better corrosion resistance at elevated temperature compared with alloy 617.

1.
2004, “
Leapfrogging the Power Grid
,”
Nature (London)
0028-0836,
427
, p.
661
.
2.
Butler
,
D.
, 2004, “
Energy: Nuclear Power’s New Dawn
,”
Nature (London)
0028-0836,
429
, pp.
238
240
.
3.
Kim
,
E. S.
,
Oh
,
C. H.
, and
Sherman
,
S.
, 2008, “
Simplified Optimum Sizing and Cost Analysis for Compact Heat Exchanger in VHTR
,”
Nucl. Eng. Des.
0029-5493,
238
, pp.
2635
2647
.
4.
Guérin
,
Y.
,
Was
,
G. S.
, and
Zinkle
,
S. J.
, 2009, “
Materials Challenges for Advanced Nuclear Energy Systems
,”
MRS Bull.
0883-7694,
34
, pp.
10
14
.
5.
Natesan
,
K.
,
Purohit
,
A.
, and
Tam
,
S. W.
, 2003, “
Materials Behavior in HTGR Environments
,” Report No. NUREG_cr6824.
6.
Corwin
,
W. R.
,
Burchell
,
T. D.
,
Duty
,
C. E.
,
Katoh
,
Y.
,
Klett
,
J. W.
,
McGreevy
,
T. E.
,
Nanstad
,
R. K.
,
Ren
,
W.
,
Rittenhouse
,
P. L.
,
Snead
,
L. L.
,
Swindeman
,
R. W.
, and
Wilson
,
D. F.
, 2006, “
Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 3
,” Report No. INL/EXT-06–11701.
7.
Hosier
,
J. C.
, and
Tillack
,
D. J.
, 1972, “
Inconel Alloy 617-New High-Temperature Alloy
,”
Met. Eng. Q.
0026-0967,
12
, pp.
51
55
.
8.
Bates
,
H. G. A.
, 1984, “
The Corrosion Behavior of High-Temperature Alloys During Exposure for Times up to 10000 H in Prototype Nuclear Process Helium at 700°C to 900°C
,”
Nucl. Technol.
0029-5450,
66
, pp.
415
428
.
9.
Graham
,
L. W.
, 1990, “
Corrosion of Metallic Materials in HTR-Helium Environments
,”
J. Nucl. Mater.
0022-3115,
171
, pp.
76
83
.
10.
Christ
,
H. J.
,
Künecke
,
U.
,
Meyer
,
K.
, and
Sockel
,
H. G.
, 1988, “
Mechanisms of High-Temperature Corrosion in Helium Containing Small Amounts of Impurities. II. Corrosion of the Nickel-Base Alloy Inconel-617
,”
Oxid. Met.
0030-770X,
30
, pp.
27
51
.
11.
Christ
,
H. J.
,
Künecke
,
U.
,
Meyer
,
K.
, and
Sockel
,
H. G.
, 1987, “
High-Temperature Corrosion of the Nickel-Based Alloy Inconel-617 in Helium Containing Small Amounts of Impurities
,”
Mater. Sci. Eng.
0025-5416,
87
, pp.
161
168
.
12.
Jang
,
C.
,
Lee
,
D.
, and
Kim
,
D.
, 2008, “
Oxidation Behaviour of an Alloy 617 in Very High-Temperature Air and Helium Environments
,”
Int. J. Pressure Vessels Piping
0308-0161,
85
, pp.
368
377
.
13.
Cabet
,
C.
,
Terlain
,
A.
,
Lett
,
P.
,
Guetaz
,
L.
, and
Gentzbittel
,
J. M.
, 2006, “
High Temperature Corrosion of Structural Materials Under Gas-Cooled Reactor Helium
,”
Mater. Corros.
0947-5117,
57
, pp.
147
153
.
14.
Cabet
,
C.
,
Chapovaloff
,
J.
,
Rouillard
,
F.
,
Girardin
,
G.
,
Kaczorowski
,
D.
,
Wolski
,
K.
, and
Pijolat
,
M.
, 2008, “
High Temperature Reactivity of Two Chromium-Containing Alloys in Impure Helium
,”
J. Nucl. Mater.
0022-3115,
375
, pp.
173
184
.
15.
Cabet
,
C.
, and
Rouillard
,
F.
, 2009, “
Corrosion of High Temperature Metallic Materials in VHTR
,”
J. Nucl. Mater.
0022-3115,
392
, pp.
235
242
.
16.
Cabet
,
C.
, and
Rouillard
,
F.
, 2009, “
Corrosion Issues of High Temperature Reactor Structural Metallic Materials
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
131
, pp.
062902
.
17.
Cabet
,
C.
,
Jang
,
J.
,
Konys
,
J.
, and
Tortorelli
,
P. F.
, 2009, “
Environmental Degradation of Materials in Advanced Reactors
,”
MRS Bull.
0883-7694,
34
, pp.
35
39
.
18.
Harper
,
M. A.
,
Barnes
,
J. E.
, and
Lai
,
G. Y.
, 2008, “
Long-Term Oxidation Behavior of Selected High Temperature Alloys
,”
Corrosion ‘97
.
19.
Wright
,
R.
, 2006, “
Summary of Studies of Aging and Environmental Effects on Inconel 617 and Haynes 230
,” Report No. INL/EXT-06–11750.
20.
Schubert
,
F.
,
Bruch
,
U.
,
Cook
,
R.
,
Diehl
,
H.
,
Ennis
,
P. J.
,
Jakobeit
,
W.
,
Penkalla
,
H. J.
,
Teheesen
,
E.
, and
Ullrich
,
G.
, 1984, “
Creep-Rupture Behavior of Candidate Materials for Nuclear Process Heat Applications
,”
Nucl. Technol.
0029-5450,
66
, pp.
227
240
.
21.
Penkalla
,
H. J.
,
Schubert
,
F.
, and
Nickel
,
H.
, 1992, “
Material Hardening Under Multiaxial Creep Loading
,”
Nucl. Eng. Des.
0029-5493,
137
, pp.
355
362
.
22.
Sharma
,
S. K.
,
Ko
,
G. D.
,
Li
,
F. X.
, and
Kang
,
K. J.
, 2008, “
Oxidation and Creep Failure of Alloy 617 Foils at High Temperature
,”
J. Nucl. Mater.
0022-3115,
378
, pp.
144
152
.
23.
Roy
,
A. K.
,
Hasan
,
M. H.
, and
Pal
,
J.
, 2009, “
Creep Deformation of Alloys 617 and 276 at 750–950°C
,”
Mater. Sci. Eng.
0025-5416,
520
, pp.
184
188
.
24.
Schneider
,
K.
,
Hartnagel
,
W.
,
Schepp
,
P.
, and
Ilschner
,
B.
, 1984, “
Creep-Behavior of Materials for High-Temperature Reactor Application
,”
Nucl. Technol.
0029-5450,
66
, pp.
289
295
.
25.
Sharma
,
S. K.
,
Jang
,
C.
, and
Kang
,
K. J.
, 2009, “
Effect of Thermo-Mechanical Processing on Microstructure and Creep Properties of the Foils of Alloy 617
,”
J. Nucl. Mater.
0022-3115,
389
, pp.
420
426
.
26.
Cappelaere
,
M.
,
Perrot
,
M.
, and
Sannier
,
J.
, 1984, “
Behavior of Metallic Materials Between 550°C and 870°C in High-Temperature Gas-Cooled Reactor Helium Under Pressures of 2-Bar and 50-Bar
,”
Nucl. Technol.
0029-5450,
66
, pp.
465
478
.
27.
Yun
,
H. M.
,
Ennis
,
P. J.
,
Nickel
,
H.
, and
Schuster
,
H.
, 1984, “
The Effect of High-Temperature Reactor Primary Circuit Helium on the Formation and Propagation of Surface Cracks in Alloy 800-H and Inconel-617
,”
J. Nucl. Mater.
0022-3115,
125
, pp.
258
272
.
28.
Shankar
,
P. S.
, and
Natesan
,
K.
, 2007, “
Effect of Trace Impurities in Helium on the Creep Behavior of Alloy 617 for Very High Temperature Reactor Applications
,”
J. Nucl. Mater.
0022-3115,
366
, pp.
28
36
.
29.
Lillo
,
T.
,
Cole
,
J.
,
Frary
,
M.
, and
Schlegel
,
S.
, 2009, “
Influence of Grain Boundary Character on Creep Void Formation in Alloy 617
,”
Metall. Mater. Trans. A
1073-5623,
40
, pp.
2803
2811
.
30.
Schlegel
,
S.
,
Hopkins
,
S.
,
Young
,
E.
,
Cole
,
J.
,
Lillo
,
T.
, and
Frary
,
M.
, 2009, “
Precipitate Redistribution During Creep of Alloy 617
,”
Metall. Mater. Trans. A
1073-5623,
40
, pp.
2812
2823
.
31.
Burke
,
M. A.
, and
Beck
,
C. G.
, 1984, “
The High-Temperature Low-Cycle Fatigue Behavior of the Nickel-Base Alloy in-617
,”
Metall. Trans. A
0360-2133,
15
, pp.
661
670
.
32.
Totemeier
,
T. C.
, and
Tian
,
H. B.
, 2007, “
Creep-fatigue-environment Interactions in INCONEL 617
,”
Mater. Sci. Eng., A
0921-5093,
468–470
, pp.
81
87
.
33.
Rao
,
K. B. S.
,
Schiffers
,
H.
,
Schuster
,
H.
, and
Nickel
,
H.
, 1988, “
Influence of Time and Temperature-Dependent Processes on Strain Controlled Low-Cycle Fatigue Behavior of Alloy-617
,”
Metall. Trans. A
0360-2133,
19
, pp.
359
371
.
34.
Roy
,
A. K.
, and
Marthandam
,
V.
, 2009, “
Mechanism of Yield Strength Anomaly of Alloy 617
,”
Mater. Sci. Eng., A
0921-5093,
517
, pp.
276
280
.
35.
Pan
,
Y.
,
Lang
,
K. H.
,
Lohe
,
D.
, and
Macherauch
,
E.
, 1993, “
Cyclic Deformation and Precipitation Behavior of NiCr22Co12Mo9 During Thermal Fatigue
,”
Phys. Status Solidi A
0031-8965,
138
, pp.
133
145
.
36.
Tawancy
,
H. M.
,
Klarstrom
,
D. L.
, and
Rothman
,
M. F.
, 1984, “
Development of a New Nickel-Base Superalloy
,”
J. Met.
0148-6608,
36
, pp.
58
62
.
37.
Ren
,
W. J.
, and
Swindeman
,
R.
, 2009, “
A Review on Current Status of Alloys 617 and 230 for Gen IV Nuclear Reactor Internals and Heat Exchangers
,”
ASME J. Pressure Vessel Technol.
0094-9930,
131
, p.
044002
.
38.
Whittenberger
,
J. D.
, 1993, “
Effect of Long-Term 1093-K Exposure to Air or Vacuum on the Structure of Several Wrought Superalloys
,”
J. Mater. Eng. Perform.
1059-9495,
2
, pp.
745
758
.
39.
Chien
,
F. R.
, and
Brown
,
R.
, 1992, “
Cyclic Oxidation of Haynes-230 Alloy
,”
J. Mater. Sci.
0022-2461,
27
, pp.
1514
1520
.
40.
Tawancy
,
H. M.
, 1996, “
High-Temperature Oxidation Behavior of a Wrought Ni-Cr-W-Mn-Si-La Alloy
,”
Oxid. Met.
0030-770X,
45
, pp.
323
348
.
41.
Liu
,
D.
,
Hu
,
R.
,
Li
,
J.
,
Liu
,
Y.
,
Kou
,
H.
, and
Fu
,
H.
, 2008, “
Isothermal Oxidation Behavior of Haynes 230 Alloy in Air at 1100°C
,”
Rare Met. Mater. Eng.
1002-185X,
37
, pp.
1545
1548
.
42.
Rouillard
,
F.
,
Cabet
,
C.
,
Wolski
,
K.
, and
Pijolat
,
M.
, 2007, “
Oxide-Layer Formation and Stability on a Nickel-Base Alloy in Impure Helium at High Temperature
,”
Oxid. Met.
0030-770X,
68
, pp.
133
148
.
43.
Rouillard
,
F.
,
Cabet
,
C.
,
Wolski
,
K.
, and
Pijolat
,
M.
, 2009, “
Oxidation of a Chromia-Forming Nickel Base Alloy at High Temperature in Mixed Diluted CO/H2O Atmospheres
,”
Corros. Sci.
0010-938X,
51
, pp.
752
760
.
44.
Rouillard
,
F.
,
Cabet
,
C.
,
Wolski
,
K.
,
Terlain
,
A.
,
Tabarant
,
M.
,
Pijolat
,
M.
, and
Valdivieso
,
F.
, 2007, “
High Temperature Corrosion of a Nickel Base Alloy by Helium Impurities
,”
J. Nucl. Mater.
0022-3115,
362
, pp.
248
252
.
45.
Kim
,
D.
,
Jang
,
C.
, and
Ryu
,
W.
, 2009, “
Oxidation Characteristics and Oxide Layer Evolution of Alloy 617 and Haynes 230 at 900°C and 1100°C
,”
Oxid. Met.
0030-770X,
71
, pp.
271
293
.
46.
Lu
,
Y. L.
,
Chen
,
L. J.
,
Liaw
,
P. K.
,
Wang
,
G. Y.
,
Brooks
,
C. R.
,
Thompson
,
S. A.
,
Blust
,
J. W.
,
Browning
,
P. F.
,
Bhattachary
,
A. K.
,
Aurrecoechea
,
J. M.
, and
Klarstrom
,
D. L.
, 2006, “
Effects of Temperature and Hold Time on Creep-Fatigue Crack-Growth Behavior of HAYNES (R) 230 (R) alloy
,”
Mater. Sci. Eng., A
0921-5093,
429
, pp.
1
10
.
47.
Lu
,
Y. L.
,
Chen
,
L. J.
,
Wang
,
G. Y.
,
Benson
,
M. L.
,
Liaw
,
P. K.
,
Thompson
,
S. A.
,
Blust
,
J. W.
,
Browning
,
R.
,
Bhattacharya
,
A. K.
,
Aurrecoechea
,
J. M.
, and
Klarstrom
,
D. L.
, 2005, “
Hold Time Effects on Low Cycle Fatigue Behavior of HAYNES 230 (R) Superalloy at High Temperatures
,”
Mater. Sci. Eng., A
0921-5093,
409
, pp.
282
291
.
48.
Lu
,
Y. L.
,
Liaw
,
P. K.
,
Sun
,
Y.
,
Wang
,
G. Y.
,
Thompson
,
S. A.
,
Blust
,
J. W.
,
Browning
,
P. F.
,
Bhattacharya
,
A. K.
,
Aurrecoechea
,
J. M.
, and
Klarstrom
,
D. L.
, 2007, “
Hold-Time Effect on the Elevated-Temperature Crack Growth Behavior of Solid-Solution-Strengthened Superalloys
,”
Acta Mater.
1359-6454,
55
, pp.
767
775
.
49.
Lu
,
Y. L.
,
Liaw
,
P. K.
,
Wang
,
G. Y.
,
Benson
,
M. L.
,
Thompson
,
S. A.
,
Blust
,
J. W.
,
Browning
,
P. F.
,
Bhattacharya
,
A. K.
,
Aurrecoechea
,
J. M.
, and
Klarstrom
,
D. L.
, 2005, “
Fracture Modes of HAYNES (R) 230 (R) Alloy During Fatigue-Crack-Growth at Room and Elevated Temperatures
,”
Mater. Sci. Eng., A
0921-5093,
397
, pp.
122
131
.
51.
Ren
,
W. J.
, and
Swindeman
,
R.
, 2009, “
A Review Paper on Aging Effects in Alloy 617 for Gen IV Nuclear Reactor Applications
,”
ASME J. Pressure Vessel Technol.
0094-9930,
131
, p.
024002
.
52.
Mankins
,
W. L.
,
Hosier
,
J. C.
, and
Bassford
,
T. H.
, 1974, “
Microstructure and Phase-Stability of Inconel Alloy 617
,”
Metall. Trans.
0026-086X,
5
, pp.
2579
2590
.
53.
Kirchhofer
,
H.
,
Schubert
,
F.
, and
Nickel
,
H.
, 1984, “
Precipitation Behavior of Ni-Cr-22Fe-18Mo (Hastelloy-X) and Ni-Cr-22Co-12Mo (Inconel-617) After Isothermal Aging
,”
Nucl. Technol.
0029-5450,
66
, pp.
139
148
.
54.
Kihara
,
S.
,
Newkirk
,
J. B.
,
Ohtomo
,
A.
, and
Saiga
,
Y.
, 1980, “
Morphological-Changes of Carbides During Creep and Their Effects on the Creep-Properties of Inconel 617 at 1000°C
,”
Metall. Trans. A
0360-2133,
11
, pp.
1019
1031
.
55.
Wu
,
Q. Y.
,
Song
,
H. J.
,
Swindeman
,
R. W.
,
Shingledecker
,
J. P.
, and
Vasudevan
,
V. K.
, 2008, “
Microstructure of Long-Term Aged IN617 Ni-Base Superalloy
,”
Metall. Mater. Trans. A
1073-5623,
39
, pp.
2569
2585
.
56.
Tan
,
L.
,
Sridharan
,
K.
,
Allen
,
T. R.
,
Nanstad
,
R. K.
, and
McClintock
,
D. A.
, 2008, “
Microstructure Tailoring for Property Improvements by Grain Boundary Engineering
,”
J. Nucl. Mater.
0022-3115,
374
, pp.
270
280
.
57.
Mo
,
K.
,
Lovicu
,
G.
,
Tung
,
H. -M.
,
Chen
,
X.
, and
Stubbins
,
J.
,
In-plane Anisotropy in Microstructure and Mechanical Behavior of Alloy 617 Following High Temperature Aging
,”
2010 TMS Annual Meeting
, 2010.
58.
Smallman
,
R. E.
, and
Ngan
,
A. H. W.
, 2007,
Physical Metallurgy and Advanced Materials
, 7th ed.,
Butterworth-Heinemann
,
Burlington, MA
, p.
389
.
59.
Reed-Hill
,
R. E.
, and
Abbaschian
,
R.
, 1991,
Physical Metallurgy Principles
, 3rd ed., CL-Engineering,
Cengage Learning
,
Stamford, CT
, p.
535
.
60.
Tan
,
L.
,
Sridharan
,
K.
, and
Allen
,
T. R.
, 2007, “
Effect of Thermomechanical Processing on Grain Boundary Character Distribution of a Ni-Based Superalloy
,”
J. Nucl. Mater.
0022-3115,
371
, pp.
171
175
.
You do not currently have access to this content.