Several gas turbine power augmentation techniques are available to counter the detrimental drop in power and thermal efficiency that occur at high ambient temperatures. Inlet fogging and wet compression are two common and relatively simple techniques. This paper addresses the influence and importance of droplet size on evaporative cooling performance and efficiency. Spray nozzles used for inlet fogging and wet compression include impaction pin, swirl jet, air assisted, and swirl flash nozzle designs. The evaporation efficiency of the atomized droplets from these nozzles depends on the droplet size, size distribution, and spray plume shape. Droplets size varies with nozzle type, configuration, operating conditions, and nozzle manifold location in the gas turbine inlet duct and are affected by airflow velocity, residence time, coalescence effects, and water carryover. The proper selection of nozzle type, nozzle manifold location, and nozzle distribution are of cardinal importance to avoid large droplets and under-/oversaturated areas, which would affect compressor mechanical and aerodynamic efficiency. Analytical and numerical studies are compared with experimental results. This paper provides a comprehensive treatment of parameters affecting droplet size and will be of value to gas turbine fog system designers and users.

1.
Meher-Homji
,
C. B.
, and
Mee
,
T. R.
, 1999, “
Gas Turbine Power Augmentation by Fogging of Inlet Air
,”
Proceedings of the 28th Turbomachinery Symposium
, Houston, TX, Sept.
2.
Meher-Homji
,
C. B.
, and
Mee
,
T. R.
, 2000, “
Inlet Fogging of Gas Turbine Engines—Part A: Theory, Psychrometrics and Fog Generation and Part B: Practical Considerations, Control and O&M Aspects
,”
ASME
Paper Nos. 2000-GT-0307 and 2000-GT-0308.
3.
Chaker
,
M.
,
Meher-Homji
,
C. B.
, and
Mee
,
T. R.
, III
, 2002, “
Inlet Fogging of Gas Turbine Engines—Part A: Fog Droplet Thermodynamics, Heat Transfer and Practical Considerations
,”
ASME
Paper No. 2002-GT-30562.
4.
Chaker
,
M.
,
Meher-Homji
,
C. B.
, and
Mee
,
T. R.
, III
, 2002, “
Inlet Fogging of Gas Turbine Engines—Part B: Fog Droplet Sizing Analysis, Nozzle Types, Measurement and Testing
,”
ASME
Paper No. 2002-GT-30563.
5.
Chaker
,
M.
,
Meher-Homji
,
C. B.
, and
Mee
,
T. R.
, III
, 2002, “
Inlet Fogging of Gas Turbine Engines—Part C: Fog Behavior in Inlet Ducts, CFD Analysis and Wind Tunnel Experiments
,”
ASME
Paper No. 2002-GT-30564.
6.
Cataldi
,
G.
,
Guntner
,
H.
,
Matz
,
C.
,
McKay
,
T.
,
Hoffman
,
J.
,
Nemet
,
A.
,
Lecheler
,
S.
, and
Braun
,
J.
, 2004, “
Influence of High Fogging Systems on Gas Turbine Engine Operation and Performance
,”
ASME
Paper No. GT2004-53788.
7.
Gajjar
,
H.
,
Chaker
,
M.
,
Dighe
,
A.
, and
Meher-Homji
,
C. B.
, 2003, “
Inlet Fogging for a 655 MW Combined Cycle Power Plant—Design, Implementation and Operating Experience
,”
ASME
Paper No. 2003-GT-38757.
8.
Misra
,
P. K.
,
Mishra
,
B. K.
,
Dighe
,
A.
,
Chaker
,
M.
, and
Meher-Homji
,
C. B.
, 2003, “
Three Years of Operational Experience With Gas Turbine Inlet Fogging at Reliance Cogeneration Facilities
,”
ASME
Paper No. 2003-GT-38983.
9.
Bhargava
,
R. K.
,
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
,
Peretto
,
A.
,
Bianchi
,
M.
,
Melino
,
F.
, and
Ingistov
,
S.
, 2005, “
Gas Turbine Fogging Technology-A State-of-the-Art Review, Part I: Inlet Evaporative Fogging-Analytical and Experimental Aspects
,”
ASME
Paper No. GT2005-68336.
10.
Bhargava
,
R. K.
,
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
,
Peretto
,
A.
,
Bianchi
,
M.
,
Melino
,
F.
, and
Ingistov
,
S.
, 2005, “
Gas Turbine Fogging Technology-A State-of-the-Art Review, Part II: Overspray Fogging-Analytical and Experimental Aspects
,”
ASME
Paper No. GT2005-68337.
11.
Bhargava
,
R. K.
,
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
,
Peretto
,
A.
,
Bianchi
,
M.
,
Melino
,
F.
, and
Ingistov
,
S.
, 2005, “
Gas Turbine Fogging Technology-A State-of-the-Art Review, Part III: Practical Considerations and Operational Experience
,”
ASME
Paper No. GT2005-69144.
12.
Wang
,
T.
,
Li
,
X.
, and
Pinniti
,
V.
, 2004, “
Simulation of Mist Transport for Gas Turbine Inlet Air Cooling
,”
ASME
Paper No. IMECE2004-60133.
13.
Ingistov
,
S.
, 2000, “
Fog System Performance in Power Augmentation of Heavy Duty Power Generating Gas Turbines GE Frame 7EA
,”
ASME
Paper No. 2000-GT-305.
14.
Savic
,
S.
,
Mitsis
,
G.
,
Hartel
,
C.
,
Khaidarov
,
P.
, and
Pfeiffer
,
P.
, 2002, “
Spray Interaction and Droplet Coalescence in Turbulent Air-Flow—An Experimental Study with Application to Gas Turbine High Fogging
,”
ILASS Europe
, Zaragoza, Spain, Sept. 9.
15.
Kleinschmidt
,
R. V.
, 1947, “
Value of Wet Compression in Gas-Turbine Cycles
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
69
(
2
), pp.
671
.
16.
Wilcox
,
E. C.
, and
Trout
,
A. M.
, 1951, “
Analysis of Thrust Augmentation of Turbojet Engines by Water Injection at Compressor Inlet Including Charts for Calculating Compression Processes With Water Injection
,”
NACA
Report No. 1006.
17.
Hill
,
P. G.
, 1963, “
Aerodynamic and Thermodynamic Effects of Coolant Ingestion on Axial Flow Compressor
,”
Aeronaut. Q.
0001-9259,
1963
, pp.
333
348
.
18.
Roumeliotis
,
I.
, and
Mathioudakis
,
K.
, 2007, “
Water Injection Effects on Compressor Stage Operation
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
778
798
.
19.
Jolly
,
S.
, 2002, “
Wet Compression—A Powerful Means of Enhancing Combustion Turbine Capacity
,”
Power-Gen International
, Orlando, FL, Dec. 10–12.
20.
Utamura
,
M.
,
Kuwahara
,
T.
,
Murata
,
H.
, and
Horii
,
N.
, 1999, “
Effects of Intensive Evaporative Cooling on Performance Characteristics of Land-Based Gas Turbines
,”
Joint Power Generation Conference
, PWR-Vol.
34
.
21.
Zheng
,
Q.
,
Sun
,
Y.
,
Li
,
S.
, and
Wang
,
Y.
, 2003, “
Thermodynamic Analyses on Wet Compression Process in the Compressor of Gas Turbine
,”
ASME J. Turbomach.
0889-504X,
125
(
3
), pp.
489
496
.
22.
Bagnoli
,
M.
,
Bianchi
,
M.
,
Melino
,
F.
,
Peretto
,
A.
,
Spina
,
P. R.
,
Ingistov
,
S.
, and
Bhargava
,
R. K.
, 2006, “
Application of a Computational Code to Simulate Interstage Injection Effects on GE Frame 7EA Gas Turbine
,”
ASME
Paper No. GT-2006-90343.
23.
Khan
,
J. R.
, and
Wang
,
T.
, 2005, “
Development of the Computational Program FogGT for Wet Compression via Fog/Overspray Gas Turbine Inlet Cooling
,” ECCC Report No. 2005-07.
24.
White
,
A. J.
, and
Meacock
,
A. J.
, 2003, “
An Evaluation of the Effects of Water Injection on Compressor Performance
,”
ASME
Paper No. GT2003-38237.
25.
Brun
,
K.
,
Kurtz
,
R.
, and
Simmons
,
H.
, 2006, “
Aerodynamic Instability and Life-Limiting Effects of Inlet and Interstage Water Injection Into Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
(
3
), pp.
617
625
.
26.
Chaker
,
M.
, 2007, “
Key Parameters for the Performance of Impaction Pin Nozzles Used in Inlet Fogging of Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
(
2
), pp.
473
477
.
27.
Lefebvre
,
A. H.
, 1989,
Atomization and Spray
,
Taylor & Francis
,
London
, Chap. 6.
28.
Bianchi
,
M.
,
Chaker
,
M.
,
De Pascale
,
A.
,
Peretto
,
A.
, and
Spina
,
P.
, “
CFD Simulation of Water Injection in GT Inlet Duct Using Spray Experimentally Tuned Data: Nozzle Spray Simulation Model and Results for an Application to a Heavy-Duty Gas Turbine
,”
ASME
Paper No. 2007GT-27361.
29.
Rostek
,
K.
,
Savic
,
S.
, and
Klaesson
,
D.
, “
Techno-Economic Evaluation of Commercially Available High Fogging Systems
,”
ASME
Paper No. GT2005-68368.
30.
Chaker
,
M.
,
Meher-Homji
,
C. B.
, and
Mee
,
T.
, III
, 2006, “
Inlet Fogging of Gas Turbine Engines: Experimental and Analytical Investigations on Impaction Pin Fog Nozzle Behavior
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
, pp.
826
839
.
You do not currently have access to this content.