This study presents an investigation of the heat transfer augmentation for the purpose of obtaining high effectiveness recuperative heat exchangers for waste heat recovery. The focus of the present work is in the fully developed portion of a 2:1 aspect ratio rectangular channel characterized by dimples applied to one wall at channel Reynolds numbers of 10,000, 18,000, 28,000, and 36,000. The dimples are applied in a staggered-row, racetrack configuration. In this study, a segmented copper test section was embedded with insulated dimples in order to isolate the heat transfer within the dimpled feature. The insulated material used to create a dimpled geometry isolates the heat transfer within the dimple cavity from the heat transfer augmentation on the surrounding smooth walls promoted by the flow disturbances induced by the dimple. Results for three different geometries are presented, a small dimple feature, a large dimple, and a double dimple. The results of this study indicate that there is significant heat transfer augmentation even on the nonfeatured portion of the channel wall resulting from the secondary flows created by the features. Overall heat transfer augmentations for the small dimples are between 13–27%, large dimples between 33–54%, and double dimples between 22–39%, with the highest heat transfer augmentation at the lowest Reynolds number for all three dimple geometries tested. Heat transfer within the dimple was shown to be less than that of the surrounding flat regions at low Reynolds numbers. Results for each dimple geometry show that dimples are capable of promoting heat transfer over the entire bottom wall surface as well as the side walls; thus the effects are not confined to within the dimple cavity.

References

1.
Snedeker
,
R. S.
, and
Donaldson
,
C. D.
, 1966, “
Observation of Bistable Flow in a Hemispherical Cavity
,”
AIAA J.
,
4
(
4
), pp.
735
736
.
2.
Murzin
,
V. N.
,
Stoklitskii
,
S. A.
, and
Chebotarev
,
A.
, 1986, “
Creation of Solitary Vortices in a Flow Around Shallow Spherical Depression
,”
Sov. Tech. Phys. Lett.
,
12
, pp.
547
548
.
3.
Belen’kiy
,
M. Y.
,
Gotovskiy
,
M. A.
,
Lekakh
,
B. M.
,
Fokin
,
B. S.
, and
Dolgushin
,
K. S.
, 1994, “
Heat Transfer Augmentation Using Surfaces Formed by a System of Spherical Cavities
,”
Heat Transfer-Sov. Res.
,
25
(
2
), pp.
196
203
.
4.
Terekhov
,
V. I.
,
Kalinina
,
S. V.
, and
Mshvidobadze
,
Y. M.
, 1995, “
Flow Structure and Heat Transfer on a Surface With a Unit Hole Depression
,”
Russ. J. Eng. Thermophys.
,
5
, pp.
11
34
.
5.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
, 1997, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passage
,” ASME 42nd International Gas Turbine and Aeroengine Congress and Exposition, Orlando, FL.
6.
Moon
,
S. W.
, and
Lau
,
S. C.
, 2002, “
Turbulent Heat Transfer Measurements on a Wall With Concave and Cylindrical Dimples in a Square Channel
,”
Proceedings ASME Turbo Expo 2002
,
Amsterdam, The Netherlands
, Paper No. GT-2002-30208.
7.
Chyu
,
M. K.
,
Yu
,
Y.
, and
Ding
,
H.
, 1999, “
Heat Transfer Enhancement in Rectangular Channels With Concavities
J. Enhanced Heat Transfer
,
6
(
6
), pp.
429
439
.
8.
Moon
,
H. K.
,
O’Connell
,
T.
, and
Glezer
,
B.
, 2000 “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,”
J. Eng. Gas Turbines and Power
,
122
(
2
), pp.
307
313
.
9.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
, 2001, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
J. Turbomach.
,
123
(
1
), pp.
115
123
.
10.
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
, 2002, “
Heat Transfer in a Dimpled Channel: Combined Influences of Aspect Ratio, Temperature Ratio, Reynolds Number, and Flow Structure
,”
Int. J. Heat Mass Transfer
,”
45
(
10
), pp.
2011
2020
.
11.
Ligrani
,
P. M.
,
Burgess
,
N. K.
, and
Won
,
S. Y.
, 2005, “
Nusselt Numbers and Flow Structure On and Above a Shallow Dimpled Surface Within a Channel Including Effects of Inlet Turbulence Intensity Level
,”
J. Turbomach.
,
127
(
2
), pp.
321
330
.
12.
Won
,
S. Y.
,
Zhang
,
Q.
, and
Ligrani
,
P. M.
, 2005, “
Comparisons of Flow Structure Above Dimpled Surfaces With Different Dimple Depths in a Channel
,”
Phys. Fluids
,
17
,
045105
.
13.
Burgess
,
N. K.
,
Oliveira
,
M. M.
, and
Ligrani
,
P. M.
, 2003, “
Nusselt Number Behavior on Deep Dimpled Surfaces Within a Channel
,”
J. Heat Transfer
,
125
(
1
), pp
11
18
.
14.
Burgess
,
N. K.
, and
Ligrani
,
P. M.
, 2004, “
Effects of Dimple Depth on Nusselt Numbers and Friction Factors for Internal Cooling in a Channel
,”
Proceedings ASME Turbo Expo, Vienna
,
Austria
, Paper No. GT 2004-54232.
15.
Burgess
,
N. K.
, and
Ligrani
,
P. M.
, 2005, “
Effects of Dimple Depth on Nusselt Numbers and Friction Factors
,”
J. Heat Transfer
,
127
(
8
), pp
839
847
.
16.
Isaev
,
S. A.
,
Leontiev
,
A. I.
,
Kudryatsev
,
N. A.
, and
Pyshnyi
,
I. A.
, 2003, “
The Effect of Rearrangement of the Vortex Structure on Heat Transfer Under Conditions of Increasing Depth of a Spherical Dimple on the Wall of a Narrow Channel
,”
High Temp.
,
41
(
2
), pp.
229
232
.
17.
Griffith
,
T. S.
,
Al Hadhrami
,
L.
, and
Han
,
J.-C.
, 2003, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4) With Dimples
,”
J. Turbomach.
,
125
(
3
), pp.
555
564
.
18.
Zhao
,
J. B.
,
Chew
,
Y. T.
, and
Khoo
,
B. C.
, 2004, “
Experiemental Studies on Hydrodynamic Resistance and Flow Pattern of a Narrow Flow Channel With Dimples on the Wall
,”
Proceedings ASME International Mechanical Engineering Congress and Exhibition
,
Anaheim, CA
, Paper No. IMECE2004-59506.
19.
Borisov
,
I.
,
Khalatov
,
A.
,
Kobzar
,
S.
, and
Glezer
,
B.
, 2004, “
Comparison of Thermo-Hydraulic Characteristics for Two Types of Dimpled Surfaces
,”
Proceedings ASME Turbo Expo 2004
,
Vienna, Austria
, Paper No. GT2004-54204.
20.
Borisov
,
I.
,
Khalatov
,
A.
,
Kobzar
,
S.
, and
Glezer
,
B.
, 2006, “
Heat Transfer and Pressure Losses in a Narrow Dimpled Channel Structured With Spherical Protrusions
,”
Proceedings ASME Turbo Expo 2006
,
Barcelona, Spain
, Paper No. GT2006-90121.
21.
Hwang
,
S. D.
,
Kwon
,
H. G.
, and
Cho
,
H. H.
, 2010, “
Local Heat Transfer and Thermal Performance on Periodically Dimple-Protrusion Patterned Walls for Compact Heat Exchangers
,”
J. Energy
,
25
(
12
), pp.
5357
5367
.
22.
Leinhart
,
H.
,
Breuer
,
M.
, and
Koksoy
,
C.
, 2008, “
Drag Reduction By Dimples? - A Complementary Experimental/ Numerical Investigation
,”
Int. J. Heat Fluid Flow
,
29
(
3
), pp.
783
791
.
23.
Isaev
,
S. A.
,
Kornev
,
N. V.
,
Leontiev
,
A. I.
, and
Hassel
,
E.
, 2010, “
Influence of the Reynolds Number and the Spherical Dimple Depth on Turbulent Heat Transfer and Hydraulic Loss in a Narrow Channel
,”
Int. J. Heat Mass Transfer
,
53
,
178
197
.
24.
Leontiev
,
A. I.
,
Isaev
,
S. A.
,
Kornev
,
N. V.
,
Chudnovsky
,
Y.
, and
Hassel
,
E.
, 2010, “
Numerical Modeling and Physical Simulation of Vortex Heat Transfer Enhancement Mechanisms Over Dimpled Reliefs
,”
Proceedings 14th International Heat Transfer Conference
,
Washington, DC
, Paper No. IHTC14-22334.
25.
Elyyan
,
M. A.
,
Rozati
,
A.
, and
Tafti
,
D. K.
, 2008, “
Investigation of Dimpled Fins for Heat Transfer Enhancement in Compact Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
51
(
11-12
), pp.
2950
2966
.
26.
Elyyan
,
M. A.
, and
Tafti
,
D. K.
, 2009, “
A Novel Split-Dimple Interrupted Fin Configuration for Heat Transfer Augmentation
,”
Int. J. Heat Mass Transfer
,
52
(
5-6
), pp
1561
1572
.
27.
Carman
,
B. G.
,
Kapat
,
J. S.
,
Chow
,
L. C.
, and
An
,
L.
, 2002, “
Impact of a Ceramic Microchannel Heat Exchanger on a Micro Turbine
,”
Proceedings ASME Turbo Expo 2002
,
Amsterdam, The Netherlands
, Paper No. GT2002-30544.
28.
Slabaugh
,
C. D.
,
Tran
,
L. V.
,
Ricklick
,
M.
, and
Kapat
,
J. S.
, 2009 “
A Study of Side Wall Heat Transfer Augmentation in a Narrow Rectangular Channel Duct
,”
Proceedings 45th AIAA Joint Propulsion Conference
,
Denver, CO
, Paper No. AIAA-2009-5377.
29.
Slabaugh
,
C. D.
,
Tran
,
L. V.
,
Ricklick
,
M.
, and
Kapat
,
J. S.
, 2010, “
Side Wall Heat Transfer Augmentation in a Narrow Rectangular Channel With Dimples Applied to the Bottom Wall
,”
Proceedings 46th AIAA Joint Propulsion Conference
,
Nashville, TN
, Paper No. AIAA-2010-6953.
30.
Slabaugh
,
C. D.
, 2010, “
Heat Transfer and Friction Augmentation in a Narrow Rectangular Duct With Dimples Applied to a Single Wall
,” M.S.M.E thesis, University of Central Florida, Orlando, FL.
31.
ASME, 2005, “
PTC 19.1, Measurement Uncertainty, ANSI/ASME Power Test Codes
,” American Society of Mechanical Engineers, New York.
32.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
7
, pp.
3
8
.
33.
Moffat
,
R. J.
, 1985, “
Uncertainty Analysis in the Planning of an Experiment
,”
J. Fluids Eng.
,
107
, pp.
173
181
.
You do not currently have access to this content.