Lubricant-derived trace element emissions are the largest contributors to the accumulation of incombustible ash in diesel particulate filters (DPF), eventually leading to filter plugging and an increase in engine fuel consumption. Particulate trace element emissions also pose adverse health effects and are the focus of increasingly stringent air quality regulations. To date, the rates and physical and chemical properties of lubricant-derived additive emissions are not well characterized, largely due to the difficulties associated with conducting the measurements. This work investigated the potential for conducting real-time measurements of lubricant-derived particle emissions. The experiment used the Soot Particle Aerosol Mass Spectrometer (SP-AMS) developed by Aerodyne Research to measure the size, mass and composition of submicron particles in the exhaust. Results confirm the ability of the SP-AMS to measure engine-out emissions of calcium, zinc, magnesium, phosphorous, and sulfur. Further, emissions of previously difficult to detect elements, such as boron, and low-level engine wear metals, such as lead, were also measured. This paper provides an overview of the results obtained with the SP-AMS, and demonstrates the utility of applying real-time techniques to engine-out and tailpipe-out trace element emissions. Application of the SP-AMS for engine exhaust characterization followed a two-part approach: (1) measurement validation, and (2) measurement of engine-out exhaust. Measurement validation utilized a diesel burner with precise control of lubricant consumption. Results showed a good correlation between CJ-4 oil consumption and measured levels of lubricant-derived trace elements in the particle phase. Following measurement validation, the SP-AMS measured engine-out emissions from a medium-duty diesel engine, operated over a standard speed/load matrix. This work demonstrates the utility of state-of-the-art online techniques (such as the SP-AMS) to measure engine-out emissions, including trace species derived from lubricant additives. Results help optimize the combined engine-lubricant-aftertreatment system and provide a real-time characterization of emissions. As regulations become more stringent and emission controls more complex, advanced measurement techniques with high sensitivity and fast time response will become an increasingly important part of engine characterization studies.

References

1.
Konstandopoulos
,
A.
,
Kostoglou
,
M.
,
Skaperdas
,
E.
,
Papaioannou
,
E.
,
Zarvalis
,
D.
, and
Klaopoulou
,
E.
, 2000, “
Fundamental Studies of Diesel Particulate Filters: Transient Loading, Regeneration and Aging
,” SAE Paper No. 2000-01-1016.
2.
Givens
,
W.
,
Buck
,
W.
,
Jackson
,
A.
,
Klador
,
A.
,
Hertzberg
,
A.
,
Moehrmann
,
W.
,
Mueller-Lunz
,
S.
,
Pelz
,
N.
, and
Wenniger
,
G.
, 2003, “
Lube Formulation Effects on Transfer of Elements to Exhaust After-Treatment System Components
,” SAE Paper No. 2003-01- 3109.
3.
Sappok
,
A.
, and
Wong
,
V.
, 2007, “
Detailed Chemical and Physical Characterization of Ash Species in Diesel Exhaust Entering Aftertreatment Systems
,” SAE Paper No. 2007-01-0318.
4.
Mayer
,
A.
,
Anrea
,
U.
,
Czerwinski
,
J.
, and
Mooney
,
J.
, 2010, “
Metal-Oxide Particles in Combustion Engine Exhaust
,” SAE Paper No. 2010-01-0792.
5.
Maricq
,
M.
, 2007, “
Chemical Characterization of Particulate Emissions From Diesel Engines: A Review
,”
Aerosol Sci.
,
38
, pp.
1079
1118
.
6.
Murphy
,
D. M.
, 2007, “
The Design of Single Particle Laser Mass Spectrometers
,”
Mass Spectrom. Rev.
,
26
, pp.
150
165
.
7.
Canagaratna
,
M. R.
,
Jayne
,
J. T.
,
Jimenez
,
J. L.
,
Allan
,
J. D.
,
Alfarra
,
M. R.
,
Zhang
,
Q.
,
Onasch
,
T. B.
,
Drewnick
,
F.
,
Coe
,
H.
,
Middlebrook
,
A.
,
Delia
,
A.
,
Williams
,
L. R.
,
Trimborn
,
A. M.
,
Northway
,
M. J.
,
DeCarlo
,
P. F.
,
Kolb
,
C. E.
,
Davidovits
,
P.
, and
Worsnop
,
D. R.
, 2007, “
Chemical and Microphysical Characterization of Ambient Aerosols with the Aerodyne Aerosol Mass Spectrometer
,”
Mass Spectrom. Rev.
,
26
, pp.
185
222
.
8.
Toner
,
S. M.
,
Sodeman
,
D. A.
, and
Prather
,
K. A.
, 2006, “
Single Particle Characterization of Ultrafine and Accumulation Mode Particles From Heavy Duty Diesel Vehicles Using Aerosol Time-Of-Flight Mass Spectrometry
,”
Environ. Sci. Technol.
,
40
, pp.
3912
3921
.
9.
Spencer
,
M. T.
,
Schields
,
L. G.
,
Sodeman
,
D. A.
,
Toner
,
S. M.
, and
Prather
,
K. A.
, 2006, “
Comparison of Oil and Fuel Particle Chemical Signatures With Particle Emissions From Heavy and Light Duty Vehicles
,”
Atmos. Environ.
,
40
, pp.
5224
5235
.
10.
Okada
,
S.
,
Kweon
,
C.
,
Stetter
,
J. C.
,
Foster
,
D. E.
,
Shafer
,
M. M.
,
Christensen
,
C. G.
,
Schauer
,
J. J.
,
Schmidt
,
A. M.
,
Silverberg
,
A. M.
, and
Gross
,
D. S.
, 2003, “
Measurement of Trace Metal Composition in Diesel Engine Particulate and its Potential for Determining Oil Consumption
,” SAE Paper No. 2003-01-0076.
11.
Jayne
,
J. T.
,
Leard
,
D. C.
,
Zhang
,
X. F.
,
Davidovits
,
P.
,
Smith
,
K. A.
,
Kolb
,
C. E.
, and
Worsnop
,
D. R.
, 2000, “
Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles
,”
Aerosol Sci. Technol.
33
, pp.
49
70
.
12.
DeCarlo
,
P. F.
,
Kimmel
,
J.
,
Trimborn
,
A.
,
Northway
,
M.
,
Jayne
,
J. T.
,
Aiken
,
A.
,
Gonin
,
M.
,
Fuhrer
,
K.
,
Horvath
,
T.
,
Docherty
,
K.
,
Worsnop
,
D. R.
, and
Jimenez
,
J. L.
, 2006, “
Field-Deployable, High-Resolution, Time-Of-Flight Aerosol Mass Spectrometer
,”
Anal. Chem
,
78
, pp.
8281
8289
.
13.
Onasch
,
T. B.
,
Trimborn
,
A.
,
Fortner
,
E. C.
,
Jayne
,
J. T.
,
Williams
,
L.
,
Kok
,
G.
,
Worsnop
,
D. R.
, and
Davidivots
,
P.
, “
Soot Particle Aerosol Mass Spectrometer (SP-AMS) - Instrument Development and Initial Applications
Aerosol Sci. Technol.
(to be published).
14.
Sappok
,
A.
, and
Wong
,
V.
, 2011, “
Lubricant-Derived Ash Properties and Their Effects on Diesel Particulate Filter Pressure Drop Performance
,”
J. Eng. Gas Turbines Power
,
133
(
3
),
032805
.
15.
Sappok
,
A.
,
Beauboeuf
,
D.
, and
Wong
,
V.
, 2008, “
A Novel Accelerated Aging System to Study Lubricant Additive Effects on Diesel Aftertreatment System Degradation
,” SAE Paper No. 2008-01-1549.
16.
Sappok
,
A.
,
Santiago
,
M.
,
Vianna
,
T.
, and
Wong
,
V.
, 2009, “
Characteristics and Effects of Ash Accumulation on Diesel Particulate Filter Performance: Rapidly Aged and Field Aged Results
,” SAE Paper No. 2009-01-1086.
17.
Scientific Instrument Services, 2010, “
Exact Masses of the Elements and Isotropic Abundances
,” http://www.sisweb.com/referenc/source/exactmas.htm.
18.
Liu
,
P. S. K.
,
Deng
,
R.
,
Smith
,
K. A.
,
Williams
,
L. R.
,
Jayne
,
J. T.
,
Canagaratna
,
M. R.
,
Moore
,
K.
,
Onasch
,
T. B.
,
Worsnop
,
D. R.
, and
Deshler
,
T.
, 2007, “
Transmission Efficiency of an Aerodynamic Focusing Lens System: Comparison of Model Calculations and Laboratory Measurements for the Aerodyne Aerosol Mass Spectrometer
,”
Aerosol Sci. Technol.
,
41
, pp.
721
733
.
19.
Jimenez
,
J. L.
,
Jayne
,
J. T.
,
Shi
,
Q.
,
Kolb
,
C. E.
,
Worsnop
,
D. R.
,
Yourshaw
,
I.
,
Seinfeld
,
J. H.
,
Flagan
,
R. C.
,
Zhang
,
X.
,
Smith
,
K. A.
,
Morris
,
J. W.
, and
Davidovits
,
P.
, 2003, “
Ambient Aerosol Sampling Using the Aerodyne Aerosol Mass Spectrometer
,”
J. Geophys. Res.
,
108
(
D7
), pp.
8425
.
20.
Froelund
,
K.
, 1999, “
Real-Time Steady-State Oil Consumption Measurement on Commercial SI-Engine
,” SAE Paper No. 1999-0-3461.
21.
Froelund
,
K.
,
Menezes
,
L.
,
Johnson
,
H.
, and
Rein
,
W.
, 2001, “
Real-Time Transient and Steady-State Measurement of Oil Consumption for Several Production SI-Engines
,” SAE Paper No. 2001-01-1902.
22.
Watson
,
S.
, 2010, “
Lubricant-Derived Ash : In-Engine Sources and Opportunities for Reduction
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
23.
Yilmaz
,
E.
,
Tian
,
T.
,
Wong
,
V.
, and
Heywood
,
J.
, 2004, “
The Contribution of Different Oil Consumption Sources to Total Oil Consumption in a Spark Ignition Engine
,” SAE Paper No. 2004-01-2909.
You do not currently have access to this content.