This work presents an analysis of the application of direct carbon fuel cells (DCFC) to large scale, coal fueled power cycles. DCFCs are a type of high temperature fuel cell featuring the possibility of being fed directly with coal or other heavy fuels, with high tolerance to impurities and contaminants (e.g., sulfur) contained in the fuel. Different DCFC technologies of this type are developed in laboratories, research centers or new startup companies, although at kW-scale, showing promising results for their possible future application to stationary power generation. This work investigates the potential application of two DCFC categories, both using a “molten anode medium” which can be (i) a mixture of molten carbonates or (ii) a molten metal (liquid tin) flowing at the anode of a fuel cell belonging to the solid oxide electrolyte family. Both technologies can be considered particularly interesting for the possible future application to large scale, coal fueled power cycles with CO2 capture, since they both have the advantage of oxidizing coal without mixing the oxidized products with nitrogen; thus releasing a high CO2 concentration exhaust gas. After a description of the operating principles of the two DCFCs, it is presented a lumped-volume thermodynamic model which reproduces the DCFC behavior in terms of energy and material balances, calibrated over available literature data. We consider then two plant layouts, using a hundred-MW scale coal feeding, where the DCFC generates electricity and heat recovered by a bottoming steam cycle, while the exhaust gases are sent to a CO2 compression train, after purification in appropriate cleaning processes. Detailed results are presented in terms of energy and material balances of the proposed cycles, showing how the complete system may surpass 65% lower heating value electrical efficiency with nearly complete (95%+) CO2 capture, making the system very attractive, although evidencing a number of technologically critical issues.

References

1.
Rastler
,
D.
,
2008
, “
Program on Technology Innovation: Systems Assessment of Direct Carbon Fuel Cells Technology
,” Electric Power Research Institute (EPRI), Report No. 1016170.
2.
Cooper
,
J. F.
,
2003
, “
Design, Efficiency and Materials for Carbon/Air Fuel Cells
,”
Direct Carbon Fuel Cell Workshop
,
NETL
,
Pittsburgh, PA
, July 30.
3.
Rastler
,
D.
,
2005
, “
DCFC
,”
Presentation at Fuel Cell Seminar, Direct Carbon Fuel Cell Workshop
,
Palm Springs
,
CA
, November 14.
4.
Chen
,
T. P.
and
Rastler
,
D.
,
2008
, “
Systems Assessment of Direct Carbon Fuel Cells Technology
,” Fuel Cell Seminar and Exposition, Phoenix, AZ, November 27–30, Paper No. 1246.
5.
Bentley
,
J.
, and
Tao
,
T.
,
2009
, “
Liquid Tin Anode Fuel Cell Direct Coal Power Generation
,”
10th Annual SECA Workshop
, Pittsburgh, PA, July 14–16.
6.
Tao
,
T.
,
McPhee
,
W. A.
,
Koslowske
,
M. T.
,
Bateman
,
L. S.
,
Slaney
,
M. J.
, and
Bentley
,
J.
,
2007
, “
Advancement in Liquid Tin Anode—Solid Oxide Fuel Cell Technology
,”
ECS Trans.
,
12
(
1
), pp.
681
690
.10.1149/1.2921593
7.
Abernathy
,
H.
,
Gemmen
,
R.
,
Gerdes
,
K.
,
Koslowske
,
M.
, and
Tao
T.
,
2011
, “
Basic Properties of a Liquid Tin Anode Solid Oxide Fuel Cell
,”
J. Power Sources
,
196
(
10
), pp.
4564
4572
.10.1016/j.jpowsour.2010.12.089
8.
Cooper
,
J. F.
,
2003
, “
Reactions of the Carbon Anode in Molten Carbonate Electrolyte
,”
Direct Carbon Fuel Cell Workshop
,
NETL
,
Pittsburgh, PA
, July 30.
9.
Balachov
,
I. I.
,
Dubois
,
L. H.
,
Hornbostel
,
M. D.
, and
Lipilin
,
A. S.
,
2005
, “
SRI's Direct Carbon Fuel Cell Technology
,”
Presented in Fuel Cell Seminar, Direct Carbon Fuel Cell Workshop
,
Palm Springs
,
CA
, November 14.
10.
Cao
,
D.
,
Sun
,
Y.
, and
Wang
,
G.
,
2007
, “
Direct Carbon Fuel Cell: Fundamentals and Recent Developments
,”
J. Power Sources
,
167
(
2
), pp.
250
257
.10.1016/j.jpowsour.2007.02.034
11.
Keairns
,
D.
,
Newby
,
R.
, and
Grol
,
E.
,
2009
, “
Innovative Coal/Fuel Cell Systems
,”
10th Annual SECA Workshop
,
Pittsburgh, PA
, July 14–16.
12.
Kivisaari
,
T.
,
Björnbom
,
P.
,
Sylwan
,
C.
,
Jacquinot
,
B.
,
Jansen
,
D.
, and
de Groot
,
A.
,
2004
, “
The Feasibility of a Coal Gasifier Combined with a High-Temperature Fuel Cell
,”
Chem. Eng. J.
,
100
(
1–3
), pp.
167
180
.10.1016/j.cej.2003.12.005
13.
Vora
,
S. D.
,
2011
, “
Overview of DOE SECA Program
,”
12th Annual SECA Workshop
,
Pittsburgh, PA
, July 26–28.
14.
Verma
,
A.
,
Rao
,
A. D.
, and
Samuelsen
,
G. S.
,
2006
, “
Sensitivity Analysis of a Vision 21 Coal Based Zero Emission Power Plant
,”
J. Power Sources
,
158
(
1
), pp.
417
427
.10.1016/j.jpowsour.2005.09.015
15.
Romano
,
M. C.
,
Campanari
,
S.
,
Spallina
,
V.
, and
Lozza
,
G.
,
2011
, “
Thermodynamic Analysis and Optimization of IT-SOFC Based Integrated Coal Gasification Fuel Cell Power Plants
,”
ASME J. Fuel Cell Sci. Tech.
8
(
4
), p.
041002
.10.1115/1.4003018
16.
Spallina
,
V.
,
Romano
,
M. C.
,
Campanari
,
S.
, and
Lozza
,
G.
,
2011
, “
A SOFC-Based Integrated Gasification Fuel Cell Cycle With CO2 Capture
,”
ASME J. Eng. Gas Turbines Power
133
, p.
071706
.10.1115/1.4002176
17.
Romano
,
M. C.
,
Spallina
,
V.
, and
Campanari
,
S.
,
2011
, “
Integrating IT-SOFC and Gasification Combined Cycle With Methanation Reactor and Hydrogen Firing for Near Zero Emission Power Generation From Coal
,”
Phys. Procedia
4
, pp.
1168
1175
.10.1016/j.egypro.2011.01.170
18.
Spallina
,
V.
,
Romano
,
M. C.
,
Campanari
,
S.
, and
Lozza
,
G.
,
2011
, “
Application of MCFC in Coal Gasification Plants for High Efficiency CO2 Capture
,”
ASME J. Eng. Gas Turbines Power
134
, p.
011701
.10.1115/1.4004128
19.
Chiesa
,
P.
,
Campanari
,
S.
, and
Manzolini
,
G.
,
2011
, “
CO2 Cryogenic Separation From Combined Cycles Integrated With Molten Carbonate Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
10355
10365
.10.1016/j.ijhydene.2010.09.068
20.
Anantharaman
,
R.
,
Bolland
,
O.
,
Booth
,
N.
,
van Dorst
,
E.
,
Ekstrom
,
C.
,
Sanchez Fernandes
,
E.
,
Franco
,
F.
,
Macchi
,
E.
,
Manzolini
,
G.
,
Nikolic
,
D.
,
Pfeffer
,
A.
,
Prins
,
M.
,
Rezvani
,
S.
, and
Robinson
,
L.
,
2011
, “European Best Practice Guidelines for Assessment of CO2 Capture Technologies,” CAESAR Project, FP7—ENERGY. 2007.5.1.1, Paper No. 213206.
21.
Madgavkar
,
A. M.
, and
Swift
,
H. E.
,
1983
, “Selective Combusting of Hydrogen Sulfide in Carbon Dioxide Injection Gas,” U.S. Patent No. 1983/4382912.
22.
Kohl
,
A.
, and
Nielsen
,
R.
,
1997
,
Gas Purification
, 5th ed.,
Gulf Publishing Company
,
Houston
, TX.
23.
Chiesa
,
P.
,
Consonni
,
S.
,
Kreutz
,
T.
, and
Williams
,
R.
,
2005
, “
Co-Production of Hydrogen, Electricity and CO2 From Coal With Commercially Ready Technology. Part A: Performance and Emissions
,”
Int. J. Hydrogen Energy
,
30
(
7
), pp.
747
767
.10.1016/j.ijhydene.2004.08.002
24.
Romano
,
M. C.
, and
Lozza
,
G. G.
,
2010
, “
Long-Term Coal Gasification-Based Power Plants With Near-Zero Emissions. Part A: Zecomix Cycle
,”
Int. J. Greenh. Gas Control
,
4
(
3
), pp.
459
468
.10.1016/j.ijggc.2009.11.009
25.
Chiesa
,
P.
,
Lozza
,
G.
,
Malandrino
,
A.
,
Romano
,
M.
, and
Piccolo
,
V.
,
2008
, “
Three-Reactors Chemical Looping Process for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
33
(
9
), pp.
2233
2245
.10.1016/j.ijhydene.2008.02.032
26.
Lozza
,
G.
,
1990
, “
Bottoming Steam Cycles for Combined Gas Steam Power Plants: A Theoretical Estimation of Steam Turbine Performance and Cycle Analysis
,”
Proceedings of the 1990 ASME Cogen Turbo
, New Orleans, LA, August 27–29,
ASME
,
New York
, pp.
83
92
.
27.
Campanari
,
S.
, and
Macchi
,
E.
,
1998
, “
Thermodynamic Analysis of Advanced Power Cycles Based Upon Solid Oxide Fuel Cells, Gas Turbines and Rankine Bottoming Cycles
,” ASME Paper No. 98-GT-585.
28.
Campanari
,
S.
,
2002
, “
Carbon Dioxide Separation From High Temperature Fuel Cell Power Plants
,”
J. Power Sources
,
112
(
1
), pp.
273
289
.10.1016/S0378-7753(02)00395-6
29.
Campanari
,
S.
,
Iora
,
P.
,
Macchi
,
E.
, and
Silva
,
P.
,
2007
, “
Thermodynamic Analysis of Integrated MCFC/Gas Turbine Cycles for Multi-MW Scale Power Generation
,”
ASME J. Fuel Cell Sci. Tech.
,
4
(
3
), pp.
308
316
.10.1115/1.2744051
30.
Aspen Plus Version 2006.5, Aspen Technology, Inc., Cambridge, MA.
31.
Peng
,
D. Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation-of-State
,”
Ind. Eng. Chem. Fundam.
,
15
, pp.
59
64
.10.1021/i160057a011
32.
Foster Wheeler
,
2003
, “Potential for Improvement in Gasification Combined Cycle Power Generation With CO2 Capture,” IEA Report No. PH4/19.
33.
NETL
,
2010
, “Cost and Performance Baseline for Fossil Energy Plants. Volume 1: Bituminous Coal and Natural Gas to Electricity,” Report No. DOE/NETL-2010/1397.
34.
Martelli
,
E.
,
Kreutz
,
T.
,
Carbo
,
M.
,
Consonni
,
S.
, and
Jansen
,
D.
,
2011
, “
Shell Coal IGCCS With Carbon Capture: Conventional Gas Quench vs. Innovative Configurations
,”
Appl. Energy
,
88
(
11
), pp.
3978
3989
.10.1016/j.apenergy.2011.04.046
35.
NASA Website, 2011, “Online Thermo Build Database,” www.grc.nasa.gov/WWW/CEAWeb/ceaThermoBuild.htm
36.
Perry
,
R. H.
, and
Green
,
D. W.
,
2007
,
Perry's Chemical Engineers’ Handbook
,
McGraw-Hill
,
New York
, Vol.
8
.
37.
Barin
,
I.
,
1995
,
Thermochemical Data of Pure Substances
,
VCH
,
Weinheim
, Germany.
38.
NIST-JANAF
,
2011
, “
Thermochemical Tables
,” National Institute of Standard and Technology—Standard Reference Data, http://kinetics.nist.gov/janaf/
You do not currently have access to this content.