In order to produce less emission of greenhouse gases, many studies have been done on the binary-cycle geothermal power plant to obtain better performance. The radial turbo expanders play an important role in the performance of the organic rankine cycle (ORC) for binary-cycle geothermal plants. However, few studies have investigated the effect of parameters of radial turbo expanders on the performance of the ORC. In this paper, a new thermodynamic model of the ORC coupled with the preliminary design of radial turbo expanders is developed. The effects of geothermal water temperature on the ORC performance parameters, such as power output and thermal efficiency are investigated by using the proposed thermodynamic model. The variation of radial turbo expanders’ parameters, such as specific rotational speed with geothermal water temperature is revealed. In the present study, the reasonable efficiency of radial turbo expanders by using the preliminary design is adopted to analyze the performance of the ORC, and an accurate reference about the effect of geothermal source on the parameters of radial turbo expanders is obtained.

References

1.
Ruggero
,
B.
,
2012
, “
Geothermal Power Generation in the World 2005-2010 Update Report
,”
Geothermics
,
41
, pp.
1
29
.10.1016/j.geothermics.2011.10.001
2.
Mortaza
,
Y.
,
2010
, “
Exergetic Analysis of Various Types of Geothermal Power Plants
,”
Renew. Energy
,
35
, pp.
112
123
.10.1016/j.renene.2009.07.023
3.
Astolfi
,
M.
,
Xodo
,
L.
, and
Romano
,
M. C.
,
2011
, “
Technical and Economical Analysis of a Solar-Geothermal Hybrid Plant Based on an Organic Rankine Cycle
,”
Geothermics
,
40
, pp.
58
68
.10.1016/j.geothermics.2010.09.009
4.
Collins
,
O. O.
,
Damien
,
P.
,
Andrea
,
D.
, and Donald, S.,
2012
, “
Optimum Integration of a Bottoming Heat Recovery System in a Geothermal Power Plant Application
,”
Proceedings of the ASME Turbo
,
Copenhagen, Denmark
, June 11–15,
ASME
Paper No. GT2012-68133.10.1115/GT2012-68133
5.
He
,
C.
,
Liu
,
C.
,
Gao
,
H.
,
Xie
, H.
,
Li
, Y. R.
,
Wu
, S. Y.
, and
Xu
, J. L.
,
2012
, “
The Optimal Evaporation Temperature and Working Fluids for Subcritical Organic Rankine Cycle
,”
Energy
,
38
, pp.
136
143
.10.1016/j.energy.2011.12.022
6.
Zhang
,
S. J.
,
Wang
,
H. X.
, and
Guo
,
T.
,
2011
, “
Performance Comparison and Parametric Optimization of Subcritical Organic Rankine Cycle (ORC) and Transcritical Power Cycle System for Low-Temperature Geothermal Power Generation
,”
Appl. Energy
,
88
, pp.
2740
2754
.10.1016/j.apenergy.2011.02.034
7.
Florian
,
H.
,
Markus
,
P.
, and
Dieter
,
B.
,
2012
, “
Zeotropic Mixtures as Working Fluids in Organic Rankine Cycles for Low-Enthalpy Geothermal Resources
,”
Renew. Energy
,
37
, pp.
364
370
.10.1016/j.renene.2011.06.044
8.
Emilie
,
S.
, and
Andrew
,
S. R.
,
2011
, “
Candidate Radial-Inflow Turbines and High-Density Working Fluids for Geothermal Power Systems
,”
Energy
,
36
, pp.
4460
4467
.10.1016/j.energy.2011.03.076
9.
Daniele
,
F.
,
Giampaolo
,
M.
, and
Francesco
,
M.
,
2012
, “
Thermo-Fluid Dynamics Preliminary Design of Turbo-Expanders for ORC Cycles
,”
Appl. Energy
,
97
, pp.
601
608
.10.1016/j.apenergy.2012.02.033
10.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
,
2007
,
NIST REFPROP Standard Reference Database23. Version 8.0. User's Guide
,
NIST
,
Boulder, CO
.
11.
Calm
,
J. M.
, and
Hourahan
,
G. C.
,
2007
, “
Refrigerant Data Update
,” HPAC Engineering,
79
(1), pp. 50-64.
12.
Ji
,
G. H.
,
1982
,
Turbo-Expander
,
China Machine Press
,
Beijing
.
13.
Madhawa Hettiarachchi
,
H. D.
,
Golubovic
,
M.
,
Worek
,
W. M.
, and Ikegami, Y.,
2007
, “
Optimum Design Criteria for an Organic Rankine Cycle Using Low-Temperature Geothermal Heat Sources
,”
Energy
,
32
(9), pp.
1698
1706
.10.1016/j.energy.2007.01.005
14.
Dai
,
Y. P.
,
Wang
,
J. F.
, and
Gao
,
L.
,
2009
, “
Parametric Optimization and Comparative Study of Organic Rankine Cycle (ORC) for Low Grade Waste Heat Recovery
,”
Energy Conversion Management
,
50
, pp.
576
582
.10.1016/j.enconman.2008.10.018
You do not currently have access to this content.