To clearly clarify the effects of different upstream boundary layer thickness and tip clearance size to the detailed tip flow field and flow mechanism, numerical simulations are performed on a subsonic compressor rotor, which is used for low-speed model testing of a rear stage embedded in a modern high-pressure compressor. First, available experimental data are adopted to validate the numerical method. Second, comparisons are made for tip leakage vortex (TLV) structure, the interface of leakage flow/mainflow, endwall loss, isentropic efficiency and pressure-rise among different operating conditions. Then, effects of different clearance sizes and inflow boundary layer thicknesses are investigated. Finally, the self-induced unsteadiness at one near-stall (NS) operating condition is studied for different cases. Results show that the increment of tip clearance size has a deleterious effect on rotor efficiency and pressure-rise performance over the whole operating range, while thickening the inflow boundary layer is almost the same except that its pressure-rise performance will be increased at mass flow rate larger than design operating condition. Self-induced unsteadiness occurs at NS operating conditions, and its appearance largely depends on tip clearance size, while the effect of upstream boundary layer thickness is little.

References

1.
Brandt
,
H.
,
Fottner
,
L.
,
Saathoff
,
H.
, and
Stark
,
U.
,
2002
, “
Effects of the Inlet Flow Conditions on the Tip Clearance Flow of an Isolated Compressor Rotor
,”
ASME Turbo Expo 2002: Power for Land, Sea, and Air, Amsterdam
, Netherlands, June 3–6, pp.
1123
1132
,
ASME
Paper No. GT2002-30639.10.1115/GT2002-30639
2.
Wisler
,
D. C.
,
1985
, “
Loss Reduction in Axial-Flow Compressor Through Low-Speed Model Testing
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
354
363
.10.1115/1.3239730
3.
Suder
,
K. L.
, and
Celestina
,
M. L.
,
1996
, “
Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
118
(
2
), pp.
218
229
.10.1115/1.2836629
4.
Prince
,
D. C.
,
Wisler
,
D. C.
, and
Hilvers
,
D. E.
,
1974
, “
Study of Casing Treatment Stall Margin Improvement Phenomena
,” General Electric Co., Cincinnati, OH, Technical Report No. CR-134552.
5.
Beheshti
,
B. H.
,
Teixeira
,
J. A.
,
Ivey
,
P. C.
,
Kaveh Ghorbanian
,
K.
, and
Farhanieh
,
B.
,
2004
, “
Parametric Study of Tip Clearance-Casing Treatment on Performance and Stability of a Transonic Axial Compressor
,”
ASME J. Turbomach.
,
126
(
5
), pp.
527
535
.10.1115/1.1791643
6.
Lin
,
F.
,
Tong
,
Z. T.
,
Geng
,
S. J.
,
Chen
,
J. Y.
, and
Nie
,
C. Q.
,
2011
, “
A Summary of Stall Warning and Suppression Research With Micro Tip Injection
,”
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
, Vancouver, BC, Canada, June 6–10, pp.
1677
1688
,
ASME
Paper No. GT2011-46118.10.1115/GT2011-46118
7.
Suder
,
K. L.
,
Hathaway
,
M. D.
,
Thorp
,
S. A.
,
Strazisar
,
A. J.
, and
Bright
,
M. B.
,
2001
, “
Compressor Stability Enhancement Using Discrete Tip Injection
,”
ASME J. Turbomach.
,
123
(
1
), pp.
14
23
.10.1115/1.1330272
8.
Wisler
,
D. C.
,
Halstead
,
D. E.
, and
Beacher
,
B. F.
,
1999
, “
Improving Compressor and Turbine Performance Through Cost-Effective Low-Speed Testing
,”
14th International Symposium on Air Breathing Engines (ISABE)
, Florence, Italy, September 5–10, ISABE Paper No. 99-7073.
9.
Lyes
,
P. A.
, and
Ginder
,
R. B.
,
1998
, “
Experimental Evaluation of the High-to-Low Speed Transformation Process for a Highly Loaded Core Compressor Stage
,” International Gas Turbine & Aeroengine Congress & Exhibition, Stockholm, Sweden, June 2–5, ASME Paper No. 98-GT-334.
10.
Wu
,
Y. H.
, and
Chu
,
W. L.
,
2006
, “
Behavior of Tip Clearance Flow in an Axial Flow Compressor Rotor
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air, Barcelona
, Spain, May 8–11, pp.
195
204
,
ASME
Paper No. GT2006-90399.10.1115/GT2006-90399
11.
Wu
,
Y. H.
,
Li
,
Q. P.
,
Zhang
,
H. G.
, and
Chu
,
W. L.
,
2010
, “
Numerical Investigation Into Unsteady Behavior of Tip Clearance Flow and Its Possible Link With Stall Inception
,”
Proc. Inst. Mech. Eng.
,
224
(1), pp.
85
96
.10.1243/09576509JPE793
12.
Yamada
,
K.
,
Kikuta
,
H.
,
Iwakiri
,
K. I.
,
Furukawa
,
M.
, and
Gunjishima
,
S.
,
2013
, “
An Explanation for Flow Features of Spike-Type Stall Inception in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021023
.10.1115/1.4007570
13.
Smith
,
G. D. J.
, and
Cumpsty
,
N. A.
,
1984
, “
Flow Phenomena in Compressor Casing Treatment
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
532
541
.10.1115/1.3239604
14.
Inoue
,
M.
,
Kuroumaru
,
M.
, and
Fukuhara
,
M.
,
1986
, “
Behavior of Tip Leakage Flow Behind an Axial Compressor Rotor
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
7
14
.10.1115/1.3239889
15.
Goto
,
A.
,
1992
, “
Three-Dimensional Flow and Mixing in an Axial Flow Compressor With Different Rotor Tip Clearances
,”
ASME J. Turbomach.
,
114
(
3
), pp.
675
685
.10.1115/1.2929192
16.
Smith
,
J. L. H.
,
1970
, “
Casing Boundary Layers in Multistage Axial-Flow Compressors
,”
Flow Research on Blading
,
A. L. S.
Dzung
, ed.,
Elsevier
,
Amsterdam, Netherlands
, pp.
275
304
.
17.
Wagner
,
J. H.
,
Dring
,
R. P.
, and
Joslyn
,
H. D.
,
1985
, “
Inlet Boundary Layer Effects in an Axial Compressor Rotor: Part I—Blade-to-Blade Effects
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
375
381
.10.1115/1.3239734
18.
Zhang
,
C. K.
,
Hu
,
J.
,
Wang
,
Z. Q.
, and
Gao
,
X.
,
2014
, “
Design Work of a Compressor Stage Through High-To-Low Speed Compressor Transformation
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
064501
.10.1115/1.4026520
19.
Zhang
,
C. K.
,
Wang
,
Z. Q.
,
Yin
,
C.
,
Yan
,
W.
, and
Hu
,
J.
,
2014
, “
Low-Speed Model Testing Studies for an Exit Stage of High Pressure Compressor
,”
ASME J. Eng. Gas Turbines Power
,
136
(
11
), p.
112603
.10.1115/1.4027637
20.
Wang
,
Z. Q.
,
Hu
,
J.
,
Wang
,
Y. F.
, and
Zhai
,
X. C.
,
2010
, “
Aerodynamic Design of Low-Speed Model Compressor for Low-Speed Model Testing
,”
Acta Aeronaut. Astronaut. Sin.
,
31
(
4
), pp.
715
723
.
21.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors and Difference Schemes
,”
J. Comput. Phys.
,
43
(2), pp.
357
382
.10.1016/0021-9991(81)90128-5
22.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.10.1115/1.2750674
23.
Zhang
,
H. W.
,
Deng
,
X. Y.
,
Lin
,
F.
,
Chen
,
J. Y.
, and
Huang
,
W. G.
,
2006
, “
A Study on the Mechanism of Tip Leakage Flow Unsteadiness in an Isolated Compressor Rotor
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air
, Barcelona, Spain, May 8–11, pp.
435
445
,
ASME
Paper No. GT2006-91123.10.1115/GT2006-91123
24.
Du
,
J.
,
Lin
,
F.
,
Zhang
,
H. W.
, and
Chen
,
J. Y.
,
2010
, “
Numerical Investigation on the Self-Induced Unsteadiness in Tip Leakage Flow for a Transonic Fan Rotor
,”
ASME J. Turbomach.
,
132
(
2
), p.
021017
.10.1115/1.3145103
25.
Wu
,
Y. H.
,
Li
,
Q. P.
,
Tian
,
J. T.
, and
Chu
,
W. L.
,
2012
, “
Investigation of Pre-stall Behavior in an Axial Compressor Rotor—Part I: Unsteadiness of Tip Clearance Flow
,”
ASME J. Turbomach.
,
134
(
3
), p.
051027
.10.1115/1.4004752
You do not currently have access to this content.