This paper presents an integrated methodology for the comprehensive assessment of combined rotorcraft–powerplant systems at mission level. Analytical evaluation of existing and conceptual designs is carried out in terms of operational performance and environmental impact. The proposed approach comprises a wide-range of individual modeling theories applicable to rotorcraft flight dynamics and gas turbine engine performance. A novel, physics-based, stirred reactor model is employed for the rapid estimation of nitrogen oxides (NOx) emissions. The individual mathematical models are implemented within an elaborate numerical procedure, solving for total mission fuel consumption and associated pollutant emissions. The combined approach is applied to the comprehensive analysis of a reference twin-engine light (TEL) aircraft modeled after the Eurocopter Bo 105 helicopter, operating on representative mission scenarios. Extensive comparisons with flight test data are carried out and presented in terms of main rotor trim control angles and power requirements, along with general flight performance charts including payload-range diagrams. Predictions of total mission fuel consumption and NOx emissions are compared with estimated values provided by the Swiss Federal Office of Civil Aviation (FOCA). Good agreement is exhibited between predictions made with the physics-based stirred reactor model and experimentally measured values of NOx emission indices. The obtained results suggest that the production rates of NOx pollutant emissions are predominantly influenced by the behavior of total air inlet pressure upstream of the combustion chamber, which is affected by the employed operational procedures and the time-dependent all-up mass (AUM) of the aircraft. It is demonstrated that accurate estimation of on-board fuel supplies ahead of flight is key to improving fuel economy as well as reducing environmental impact. The proposed methodology essentially constitutes an enabling technology for the comprehensive assessment of existing and conceptual rotorcraft–powerplant systems, in terms of operational performance and environmental impact.
Skip Nav Destination
e-mail: roberto.dippolito@noesissolutions.com
Article navigation
January 2015
Research-Article
A Multidisciplinary Approach for the Comprehensive Assessment of Integrated Rotorcraft–Powerplant Systems at Mission Level
Ioannis Goulos,
Ioannis Goulos
Centre for Propulsion,
School of Engineering,
e-mail: i.goulos@cranfield.ac.uk
School of Engineering,
Cranfield University
,Bedfordshire MK430AL
, UK
e-mail: i.goulos@cranfield.ac.uk
Search for other works by this author on:
Fakhre Ali,
Fakhre Ali
Centre for Propulsion,
School of Engineering,
e-mail: f.ali@cranfield.ac.uk
School of Engineering,
Cranfield University
,Bedfordshire MK430AL
, UK
e-mail: f.ali@cranfield.ac.uk
Search for other works by this author on:
Konstantinos Tzanidakis,
Konstantinos Tzanidakis
Centre for Propulsion,
School of Engineering,
e-mail: k.tzanidakis@cranfield.ac.uk
School of Engineering,
Cranfield University
,Bedfordshire MK430AL
, UK
e-mail: k.tzanidakis@cranfield.ac.uk
Search for other works by this author on:
Vassilios Pachidis,
Vassilios Pachidis
Centre for Propulsion,
School of Engineering,
e-mail: v.pachidis@cranfield.ac.uk
School of Engineering,
Cranfield University
,Bedfordshire MK430AL
, UK
e-mail: v.pachidis@cranfield.ac.uk
Search for other works by this author on:
Roberto d'Ippolito
e-mail: roberto.dippolito@noesissolutions.com
Roberto d'Ippolito
NOESIS Solutions
,Gaston Geenslaan, 11 B4
,Leuven 3001
, Belgium
e-mail: roberto.dippolito@noesissolutions.com
Search for other works by this author on:
Ioannis Goulos
Centre for Propulsion,
School of Engineering,
e-mail: i.goulos@cranfield.ac.uk
School of Engineering,
Cranfield University
,Bedfordshire MK430AL
, UK
e-mail: i.goulos@cranfield.ac.uk
Fakhre Ali
Centre for Propulsion,
School of Engineering,
e-mail: f.ali@cranfield.ac.uk
School of Engineering,
Cranfield University
,Bedfordshire MK430AL
, UK
e-mail: f.ali@cranfield.ac.uk
Konstantinos Tzanidakis
Centre for Propulsion,
School of Engineering,
e-mail: k.tzanidakis@cranfield.ac.uk
School of Engineering,
Cranfield University
,Bedfordshire MK430AL
, UK
e-mail: k.tzanidakis@cranfield.ac.uk
Vassilios Pachidis
Centre for Propulsion,
School of Engineering,
e-mail: v.pachidis@cranfield.ac.uk
School of Engineering,
Cranfield University
,Bedfordshire MK430AL
, UK
e-mail: v.pachidis@cranfield.ac.uk
Roberto d'Ippolito
NOESIS Solutions
,Gaston Geenslaan, 11 B4
,Leuven 3001
, Belgium
e-mail: roberto.dippolito@noesissolutions.com
Contributed by the Turbomachinery Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 4, 2014; final manuscript received July 10, 2014; published online August 26, 2014. Editor: David Wisler.
J. Eng. Gas Turbines Power. Jan 2015, 137(1): 012603 (11 pages)
Published Online: August 26, 2014
Article history
Received:
July 4, 2014
Revision Received:
July 10, 2014
Citation
Goulos, I., Ali, F., Tzanidakis, K., Pachidis, V., and d'Ippolito, R. (August 26, 2014). "A Multidisciplinary Approach for the Comprehensive Assessment of Integrated Rotorcraft–Powerplant Systems at Mission Level." ASME. J. Eng. Gas Turbines Power. January 2015; 137(1): 012603. https://doi.org/10.1115/1.4028181
Download citation file:
Get Email Alerts
Multi-Disciplinary Optimization of Gyroid Topologies for a Cold Plate Heat Exchanger Design
J. Eng. Gas Turbines Power
Comparison of Rim Sealing Effectiveness in Different Geometrical Configurations
J. Eng. Gas Turbines Power
Related Articles
Impact of Adverse Environmental Conditions on Rotorcraft Operational Performance and Pollutant Emissions
J. Eng. Gas Turbines Power (February,2018)
Assessment of CO 2 and NO x Emissions in Intercooled Pulsed Detonation Turbofan Engines
J. Eng. Gas Turbines Power (January,2019)
Design Exploration and Performance Assessment of Advanced Recuperated Hybrid-Electric Urban Air Mobility Rotorcraft
J. Eng. Gas Turbines Power (March,2022)
Emissions of a Wet Premixed Flame of Natural Gas and a Mixture With Hydrogen at High Pressure
J. Eng. Gas Turbines Power (April,2017)
Related Proceedings Papers
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Low Emissions Engine Combustor Technology Evolution
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)