The performance map of a radial compressor operating with supercritical CO2 is computed by means of three-dimensional steady state Reynolds-averaged Navier–Stokes simulations. The geometry investigated is part of a 250 kW prototype which was tested at Sandia National Laboratories (SNL). An in-house fluid dynamic solver is coupled with a lookup table algorithm to evaluate the fluid properties. Tables are generated using a multiparameter equation of state, which ensures high accuracy in the fluid characterization. The compressor map is calculated considering three different rotational speeds (45 krpm, 50 krpm, and 55 krpm). For each speed-line, several mass flow rates are simulated. Numerical results are compared to experimental data from SNL to prove the potential of the methodology.

References

1.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles for Power Production
,”
ASME J. Eng. Power
,
90
(
3
), pp.
287
295
.10.1115/1.3609190
2.
Feher
,
E. G.
,
1968
, “
The Supercritical Thermodynamic Power Cycle
,”
Energy Convers.
,
8
(
2
), pp.
85
90
.10.1016/0013-7480(68)90105-8
3.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
High-Performance Supercritical Carbon Dioxide Cycle for Next-Generation Nuclear Reactors
,”
Nucl. Technol.
,
154
(
3
), pp.
265
282
.
4.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles
,”
Nucl. Technol.
,
154
(
3
), pp.
283
301
.
5.
Ishiyama
,
S.
,
Muto
,
Y.
,
Kato
,
Y.
,
Nishio
,
S.
,
Hayashi
,
T.
, and
Nomoto
,
Y.
,
2008
, “
Study of Steam, Helium and Supercritical CO2 Turbine Power Generations in Prototype Fusion Power Reactor
,”
Prog. Nucl. Energy
,
50
(
2–6
), pp.
325
332
.10.1016/j.pnucene.2007.11.078
6.
Kim
,
Y. M.
,
Kim
,
C. G.
, and
Favrat
,
D.
,
2012
, “
Transcritical or Supercritical CO2 Cycles Using Both Low- and High-Temperature Heat Sources
,”
Energy
,
43
(
1
), pp.
402
415
.10.1016/j.energy.2012.03.076
7.
Yamaguchi
,
H.
,
Sawada
,
N.
,
Suzuki
,
H.
,
Ueda
,
H.
, and
Zhang
,
X.-R.
,
2010
, “
Preliminary Study on a Solar Water Heater Using Supercritical Carbon Dioxide as Working Fluid
,”
ASME J. Sol. Energy
,
132
(
1
), p.
011010
.10.1115/1.4000350
8.
Garg
,
P.
,
Kumar
,
P.
, and
Srinivasan
,
K.
,
2013
, “
Supercritical Carbon Dioxide Brayton Cycle for Concentrated Solar Power
,”
J. Supercrit. Fluids
,
76
, pp.
54
60
.10.1016/j.supflu.2013.01.010
9.
Iverson
,
B. D.
,
Conboy
,
T. M.
,
Pasch
,
J. J.
, and
Kruizenga
,
A. M.
,
2013
, “
Supercritical CO2 Brayton Cycles for Solar-Thermal Energy
,”
Appl. Energy
,
111
, pp.
957
970
.10.1016/j.apenergy.2013.06.020
10.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy
,
135
(
4
), p.
041007
.10.1115/1.4024030
11.
Wright
,
S. A.
,
Radel
,
R. F.
,
Vernon
,
M. E.
,
Rochau
,
G. E.
, and
Pickard
,
P. S.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,” Sandia National Laboratories, Livermore, CA, Sandia Report No. SAND2010-0171.
12.
Conboy
,
T.
,
Wright
,
S.
,
Pasch
,
J.
,
Fleming
,
D.
,
Rochau
,
G.
, and
Fuller
,
R.
,
2012
, “
Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111703
.10.1115/1.4007199
13.
Boncinelli
,
P.
,
Rubechini
,
F.
,
Arnone
,
A.
,
Cecconi
,
M.
, and
Cortese
,
C.
,
2004
, “
Real Gas Effects in Turbomachinery Flows: A Computational Fluid Dynamics Model for Fast Computations
,”
ASME J. Turbomach.
,
126
(
2
), pp.
268
276
.10.1115/1.1738121
14.
Colonna
,
P.
,
Harinck
,
J.
,
Rebay
,
S.
, and
Guardone
,
A.
,
2008
, “
Real-Gas Effects in Organic Rankine Cycle Turbine Nozzles
,”
J. Propul. Power
,
24
(
2
), pp.
282
294
.10.2514/1.29718
15.
Harinck
,
J.
,
Guardone
,
A.
, and
Colonna
,
P.
,
2009
, “
The Influence of Molecular Complexity on Expanding Flows of Ideal and Dense Gases
,”
Phys. Fluids
,
21
(
8
), p.
086101
.10.1063/1.3194308
16.
Harinck
,
J.
,
Colonna
,
P.
,
Guardone
,
A.
, and
Rebay
,
S.
,
2010
, “
Influence of Thermodynamic Models in Two-Dimensional Flow Simulations of Turboexpanders
,”
ASME J. Turbomach.
,
132
(
1
), p.
011001
.10.1115/1.3192146
17.
Congedo
,
P. M.
,
Corre
,
C.
, and
Cinnella
,
P.
,
2011
, “
Numerical Investigation of Dense-Gas Effects in Turbomachinery
,”
Comput. Fluids
,
49
(
1
), pp.
290
301
.10.1016/j.compfluid.2011.06.012
18.
Pecnik
,
R.
,
Rinaldi
,
E.
, and
Colonna
,
P.
,
2012
, “
Computational Fluid Dynamics of a Radial Compressor Operating With Supercritical CO2
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122301
.10.1115/1.4007196
19.
Pecnik
,
R.
,
Terrapon
, V
. E.
,
Ham
,
F.
,
Iaccarino
,
G.
, and
Pitsch
,
H.
,
2012
, “
Reynolds-Averaged Navier–Stokes Simulations of the HyShot II Scramjet
,”
AIAA J.
,
50
(
8
), pp.
1717
1732
.10.2514/1.J051473
20.
Span
,
R.
, and
Wagner
,
W.
,
2003
, “
Equations of State for Technical Applications. I. Simultaneously Optimized Functional Forms for Nonpolar and Polar Fluids
,”
Int. J. Thermophys.
,
24
(
1
), pp.
1
39
.10.1023/A:1022390430888
21.
Lemmon
,
E. W.
,
McLinden
,
M. O.
, and
Huber
,
M. L.
,
2002
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0
,” National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD.
22.
Liou
,
M.-S.
,
1996
, “
A Sequel to AUSM: AUSM+
,”
J. Comput. Phys.
,
129
(
2
), pp.
364
382
.10.1006/jcph.1996.0256
23.
Venkatakrishnan
,
V.
,
1995
, “
Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids With Limiters
,”
J. Comput. Phys.
,
118
(
1
), pp.
120
130
.10.1006/jcph.1995.1084
24.
Kim
,
S.-E.
,
Makarov
,
B.
, and
Caraeni
,
D.
,
2003
, “
A Multi-Dimensional Linear Reconstruction Scheme for Arbitrary Unstructured Grids
,”
AIAA
Paper No. 2003-3990.10.2514/6.2003-3990
25.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
26.
Pulliam
,
T. H.
, and
Steger
,
J. L.
,
1985
, “
Recent Improvements in Efficiency, Accuracy, and Convergence for Implicit Approximate Factorization Algorithms
,”
AIAA
Paper No. 85-036010.2514/6.1985-360.
27.
Rinaldi
,
E.
,
Pecnik
,
R.
, and
Colonna
,
P.
,
2014
, “
Exact Jacobians for Implicit Navier–Stokes Simulations of Equilibrium Real Gas Flows
,”
J. Comput. Phys.
,
270
, pp.
459
477
.10.1016/j.jcp.2014.03.058
28.
Satish
,
B.
,
Buschelman
,
K.
,
Eijkhout
,
V.
,
Gropp
,
W. D.
,
Kaushik
,
D.
,
Knepley
,
M. G.
,
McInnes
,
L. C.
,
Smith
,
B. F.
, and
Zhang
,
H.
,
2009
, “
PETSc: Portable, Extensible Toolkit for Scientific Computation
,” http://www.mcs.anl.gov/petsc
29.
Fenghour
,
A.
,
Wakeham
,
W. A.
, and
Vesovic
,
V.
,
1998
, “
The Viscosity of Carbon Dioxide
,”
J. Phys. Chem. Ref. Data
,
27
(
1
), pp.
31
39
.10.1063/1.556013
30.
Vesovic
,
V.
,
Wakeham
,
W. A.
,
Olchowy
,
G. A.
,
Sengers
,
J. V.
,
Watson
,
J. T. R.
, and
Millat
,
J.
,
1990
, “
The Transport Properties of Carbon Dioxide
,”
J. Phys. Chem. Ref. Data
,
19
(
3
), pp.
763
808
.10.1063/1.555875
31.
Colonna
,
P.
,
van der Stelt
,
T. P.
, and
Guardone
,
A.
,
2012
, “
FluidProp (Version 3.0): A Program for the Estimation of Thermophysical Properties of Fluids
,” Asimptote, Delft, The Netherlands, http://www.fluidprop.com/
32.
Denton
,
J. D.
,
1992
, “
The Calculation of Three-Dimensional Viscous Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
18
26
.10.1115/1.2927983
33.
ANSYS
,
2009
,
ansys bladegen, Release 13.0 User’s Guide
,
ANSYS, Inc.
,
Canonsburg, PA
.
34.
Shewchuk
,
J. R.
,
2002
, “
Delaunay Refinement Algorithms for Triangular Mesh Generation
,”
Comp. Geom. Theory Appl.
,
22
(
1–3
), pp.
21
74
.10.1016/S0925-7721(01)00047-5
35.
Rinaldi
,
E.
,
Pecnik
,
R.
, and
Colonna
,
P.
,
2013
, “
Steady State CFD Investigation of a Radial Compressor Operating With Supercritical CO2
,”
ASME
Paper No. GT2013-9458010.1115/GT2013-94580.
36.
Baltadjiev
,
N.
,
Lettieri
,
C.
, and
Spakovszky
,
Z.
,
2014
, “
An Investigation of Real Gas Effects in Supercritical CO2 Centrifugal Compressors
,”
ASME
Paper No. GT2014-2618010.1115/GT2014-26180.
37.
Lettieri
,
C.
,
Yang
,
D.
, and
Spakovszky
,
Z.
,
2014
, “
An Investigation of Condensation Effects in Supercritical Carbon Dioxide Compressors
,”
4th International Symposium—Supercritical CO2 Power Cycles
, Pittsburg, PA, Sept. 9–10.
38.
He
,
S.
,
Kim
,
W. S.
, and
Bae
,
J. H.
,
2008
, “
Assessment of Performance of Turbulence Models in Predicting Supercritical Pressure Heat Transfer in a Vertical Tube
,”
Int. J. Heat Mass Transfer
,
51
(
19–20
), pp.
4659
4675
.10.1016/j.ijheatmasstransfer.2007.12.028
39.
Yoo
,
J. Y.
,
2013
, “
The Turbulent Flows of Supercritical Fluids With Heat Transfer
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
495
525
.10.1146/annurev-fluid-120710-101234
40.
Nemati
,
H.
,
Patel
,
A.
,
Boersma
,
B. J.
, and
Pecnik
,
R.
,
2013
, “
Direct Numerical Simulation of Turbulent Flow With Supercritical Fluid in a Heated Pipe
,”
International Symposium on Turbulence and Shear Flow Phenomena (TSFP-8)
, Poitiers, France, Aug. 28–30.
You do not currently have access to this content.